

An Elsevier Indexed Journal

ISSN-2230-7346

Journal of Global Trends in Pharmaceutical Sciences

UTILITY OF ANALYTICAL REAGENT FOR SPECTROPHOTOMETRIC DETERMINATION OF NEBIVOLOL HYDROCHLORIDE

A. Narayana¹, U. Srinivasulu^{2*}, C. Narasimha Rao³, K. Sivakumar¹

¹Department of Chemistry, SV Arts College (Tirumala Tirupathi Devasthanams), Tirupati - 517 502, Andhra Pradesh, India,

²Department of Chemistry, S.B.S.Y.M. Degree College, Kurnool-518004, A.P, India.

³Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, A.P, India

*Corresponding author E-mail: <u>upparapallisrinivasulu@gmail.com</u>

ARTICLE INFO	ABSTRACT
Key Words	A simple, sensitive and rapid spectrophotometric method was developed for the
Nebivolol Hcl, DDQ,	determination of nebivolol hydrochloride (NBV) in pure and its formulations. The
ICH, Beers law,	developed method was based on the formation of charge-transfer complex between the
Charge transfer	drug, an n-electron donor and π -acceptors, reagent 2, 3-dichloro-5, 6-dicyano-p-
complex	benzoquinone. The formed charge-transfer complexe absorbance was measured at
	nm and used for the estimation of NBV in its pure and commercial dosage forms. The developed method was obeyed the beer's law in the concentrate range 4-28 μ g/ml, percentage of recovery was found 99.02 to 99.52% and method was validated as per ICH guidelines.

INTRODUCTION:

Nebivolol Hydrochloride (NBV) is chemically known as 1-(6-fluorochroman-2yl)-{[2-(6-fluorochroman-2-yl)-2-hydroxyethyl] amino} ethanol hydrochloride and is structurally given in Fig.1 having with formula C₂₂H₂₆F₂NO₄Cl and molecular weight 441.90 g/mol. It is cardioselective beta₁ receptor blocker with nitric oxide potentiating vasodilatory effect used in the treatment of hypertension and also for left failure¹. ventricular It is highly cardioselective under certain circumstances¹. Nebivolol is approximately 3.5 times more

β1-adrenoceptor-selective than bisoprolol and other β 1-adrenergic blockers in human myocardium and thus might be the most β 1adrenoceptor-selective antagonist available for clinical practice at the moment². It is officially published in IP³. While reviewing literature, UV spectrophotometry⁴, capillary electrophoresis⁵, high performance thinliquid chromatography (HPTLC)⁶ and highperformance liquid chromatography (HPLC) ^{7, 8} were reported with UV detection for determination of nebivolol in pharmaceutical forms. Two methods were

reported on the separation of enantiomers determination and the of nebivolol metabolites⁹. To the best of our knowledge, no spectrophotometric methods were reported for estimation of colour complex formation of nebivolol hydrochloride with reagent of DDO. novel А method spectrophotometric has been developed for the determination of nebivolol hydrochloride with reagents which is time saving, simple and reproducible in bulk and pharmaceutical formulations.

MATERIALS AND METHODS

Materials and reagents: Nebivolol hydrochloride was procured from reputed pharmaceutical company as a free sample and its formulations i.e. Mucolite, Ambrodil and Ambrolite were purchased in local market, Tiurpati. All the chemicals used were of analytical reagent grade.

Instrumentation: All measurements were carried out using a Shimadzu UV-Visible spectrophotometer (UV-160A) with a matched pair of 10 mm quartz cells. Mettler Toledo analytical balance (accuracy 0.1 mg) was used for weighing all the samples.

Preparation standard solution: of Standrad solution was prepared by dissolving 100mg of NBV in 100ml flask in DMSO. volumetric The concentration of resulting solution was 1 mg/ml and further diluted to obtain required concentrations for the present investigation.

Preparation of reagent: 0.20% (w/v) of reagent solution was prepared by dissolving 0.2g of DDQ compound in 100 ml of acetonitrile in standard volumetric flask, sonicated and used as such.

Method Development: Freshly prepared aliquots of NBV in the range of 4-28µg/ml were transferred to a series of clean and dry volumetric flasks and added 2.2 ml of 0.2% DDQ solution to each flask followed by mixing of the contents to obtain wine red chromogen. The maximum absorbance of the formed charge transfer complex was measured at 450 nm against the reagent blank.

Procedure for analysis of pure drug

Accurately weighed an amount of pure drug BRH was transferred into clean and dry volumetric fl ask, subsequently diluted with water to get the required concentration and analyzed by above mentioned the procedure.

Procedure for Assay of Pharmaceuticals: Twenty tablets were weighed and grinded into fine powder. A quantity of grinded powder eqavalent to 100 mg was taken into volumetric flask dissolving with DMSO and analysed solution by using as stated above methods.

RESULTS:

The molecular interaction between electron donors and acceptors is generally associated with the formation of intensely colored charge transfer complexes, which absorb in the visible region [9]. The photometric methods based on molecular interactions are simple and appropriate since they result in the rapid formation of the complexes. NBV is n-electron donor and will form charge-transfer complexes with selected reagents which act as π -acceptors.

Absorption Spectrum: Fresh aliquots of 0.2% DDQ solution was added into various volumes of NBV solution and measured the maximum absorbance of wine red chromogen at 450 nm against the reagent blank.

Effect of reagent concentration: To obtain optimum concentration of reagent, standard solution was allowed to react with 0.2% DDQ solution in the range of 0.2-2.8 ml and found that high intensity chromogen was formed at 2.2 ml.

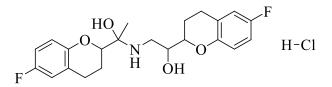


Fig. 1 Structure of nebivolol hydrochloride

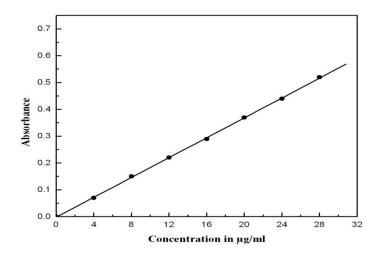


Fig.2 Calibration plot of nebivolol hydrochloride

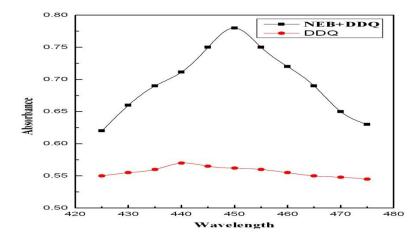


Fig.3 Absorption spectrum of nebivolol hydrochloride with DDQ

Parameter	DDQ method
r al allicici	DDQ method
$\lambda max (nm)$	450
	.00
Beer's law limit (µg/ml)	4 - 28
	< 000 0
Molar absorbance (L.mol-1 cm-1)	6.0982
Sandell's sensitivity (µg.cm-2/0.001 A.U)	0.0014
	0.0011
Correlation coefficient (r2)	0.9954
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Slope (m)	0.0175
Intercept (c)	0.0282
intercept (c)	0.0202
%RSD	0.1775
Colour	Wine Red
LOD	0.2314
LOD	0.2314
LOQ	0.7012

Table 1: Spectral characteristics of the drug with reagent

Table 2: Evalu	nation of accuracy	and precision res	ults of the propose	d method in bulk form
Table 2. Evalu	Jation of accuracy	and precision res	und of the propose	

Method	Taken	Intra day					Inter	day	
	mg/ml	*Found mg/ml	Reco- very	± SD	% RSD	*Found mg/ml	Recov- ery%	± SD	% RSD
			%						
DDQ	4	3.93	98.21	0.0098	0.2503	3.94	98.58	0.0207	0.5238
method	6	5.93	98.81	0.0147	0.2483	5.96	99.25	0.0356	0.5984
	8	7.94	99.25	0.0141	0.1781	7.92	98.98	0.0387	0.4886

*Average of six determinations

Table 3: Evaluation of accuracy and precision results of the proposed method in
pharmaceutical dosage form

	Pharma-	Intra day				Inter day				
Method	ceutical formulation	Taken mg/ml	*Found mg/ml	Reco- very %	± SD	% RSD	*Found mg/ml	Recov- ery%	± SD	% RSD
DDO	Nebicard	4	3.93	98.21	0.0343	0.8732	3.93	98.13	0.0321	0.8177
DDQ method	Nebilong	6	5.92	98.67	0.0089	0.1511	5.95	99.08	0.0226	0.3799
method	Nebistar	8	7.91	98.83	0.0081	0.1033	7.87	98.33	0.0388	0.4934

*Average of six determinations

Name of the drug	Pharmaceutical formulation	Labeled amount (mg/ml)	*Found (mg/ml)	Recovery %	± SD	% RSD
Nebivolol hydrochlo-	Nebicard	5	4.95	99.02	0.0169	0.3597
ride	Nebilong	5	4.96	99.18	0.0206	0.4386
Inde	Nebistar	5	4.98	99.52	0.0116	0.2393

Table 4: Determination of recovery of nebivolol hydrochloride in pharmaceuticalformulation

*Average of six determinations

Table 5: Determination of	f nebivolol hvdrochloride	in presence of excipients
		F

Excipients	Amount taken mg/ml	*Found mg/ml	Recovery %	±SD	RSD%
Glucose	2	1.96	98.17	0.0186	0.9483
Sucrose	3	2.95	98.22	0.0216	0.7331
Lactose	4	3.94	98.50	0.0141	0.3589
Dextrose	2	1.97	98.67	0.0121	0.6137
Talc	3	2.96	98.61	0.0232	0.7831
Starch	4	3.95	98.83	0.0314	0.7946

*Average of six determinations

Effect of the concentration of the drug: In the standard solution of range of $4-28\mu$ g/ml, a known standard volume of reagent was added for colour development and measured the maximum absorbance at 450 nm and all the results obeyed the Beer's law.

Method validation: The present developed method for determination of NBV was validated according to the International conference on harmonization (ICH) guidelines^{17,18} with respect to the parameters like linearity, accuracy, precision, recovery and specificity, Limit of detection (LOD), Limit of quantitation (LOQ) and robustness. Standard calibration curve was constructed by plotting absorbance versus concentration [Fig.2] and regression equation was derived from the calibration plot. The linearity of calibration graphs was proved by the high values of the correlation coefficient and the small values of the y - intercept of the regression equation. Recovery studies were

conducted by using standard addition method and obtained results reported in table 4 to proved accuracy of the method. To confirm the repetability, intra day and inter day analysis were performed and obtained results were reported in terms of % RSD in respective table 2 and table 3 and found no significanat variation. То assess the specificity and selectivity of developed method, the effect excipients like starch, lactose, glucose, sugar, talc etc. were studied. The results indicated in table 5 that there was no effect of interference from the excipients on the developed methods. The Sandell's sensitivity, LOD, LOQ of the resulting colored complexes were also calculated and reported in respective table 1.

DISCUSSION

Nebivolol hydrochloride is a cardioselective beta₁ receptor blocker and also used in treatment of hypertension.

Nebivolol is commercially available in the form of Nebest, Nebicard, Nebistar. Nebilong etc. In a laboratory experiment conducted on biopsied heart tissue. nebivolol proved to be the most β 1-selective of the β-blockers tested. being approximately 3.5 times more β 1-selective than bisoprolol. However, the drug's receptor selectivity in humans is rather more complex and depends on the drug dose and the genetic profile of the patient taking the medication. The nebivolol hydrochloride was analysed by using current developed method in both bulk and tablet form. The linearity of the calibration standards of the drug by spectrophotometric method was good from the result of correlation coefficient. The overall recovery of the drug by the proposed method was good. Hence, the proposed analytical method is free from interface due to the excipients and other impurities present in the tablet forms. LOD, LOQ, molar absorptivity and Sandal's sensitivity values indicated that the proposed analytical method, i.e. spectrophotometric method was more accurate, precious and cost effective for determination of drug in bulk and pharmaceutical formulations.

REFERENCES:

- 1. http://en.wikipedia.org/wiki/Nebivolol
- 2. RA de Boer, AA Voors, DJ van Veldhuisen, *Expert Opin Pharmacother*, 2007, 8, 1539.
- 3. Indian Pharmacopeia Commission, Ghaziabad, *Indian pharmacopeia*, 2014, II, 2310.
- 4. MR Bristow, P Nelson, W Minobe, C Johnson, *Am J Hyperten*, 2005, 18, 51.
- 5. MM Kamila, N Mondal, LK Ghosh, BK Gupta, *Pharmazie*, 2007, 62, 486.

- 6. D Mangelings, J Discry, M Maftouh, DL Massart, Y Vander Heyden, *Electrophoresis*, 2005, 26, 3930.
- 7. LJ Patel, BN Suhagia, PB Shah, *Indian J Pharm Sci.*, 2007, 69, 594.
- 8. KR Rajeswari, ., Asian J Chem., 2005, 17, 1259.
- 9. HY Aboul-Enien, I Ali, *Pharmazie*, 2001, 56, 214.
- 10. J Hendrickx, J Chromatogr A., 1996, 729, 341.
- 11. HH Maurer, *Chromatogr A.*, 2004, 1058, 169.
- 12. NV Ramakrishna, J Pharm Biomed Anal., 2005, 39, 1006.
- 13. Selvan, J Chromatogr B Analyt Technol Biomed Life Sci., 2007, 858, 143.
- 14. Hesham Salem, J Pharm Biomed Anal., 2002, 29, 527.
- 15. Farhan Ahmed siddiqui, *Eur J Med Chem*, 2010, 45, 2761.
- 16. N. Rahman, H. Rahman, Syed Hejaz Azmi, *Int. J. Biol. Life Sciences*, 2006, 2, 52.
- ICH of Technical requirements for the registration of Pharmaceutical for human use, validation of Text and analytical procedures Q2(R1): Current Step 4 version, Parent Guideline dated 27 October 1994, (Complementary Guideline on Methodology dated 6 November 1996, incorporated in November 2005)
- 18. ICH Q2A & Q2B, Analytical methods: A statistical perspective on the ICH Q2A and Q2B guidelines for validation of analytical methods, 2006