

An Elsevier Indexed Journal

ISSN-2230-7346

Journal of Global Trends in Pharmaceutical Sciences

DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS DETERMINATION OF DULOXETINE AND MECOBALAMIN IN TABLET DOSAGE FORM BY RP-HPLC

M. Vasantha kumari*, M. Madhu, K. Yogendrachari E. Gireesh Kumar, S.Sangeetha

Department of Pharmaceutical Analysis & Quality Assurance, Annamacharya College of Pharmacy, New Boyanpalli, Rajampet-516115, Kadapa(Dt), A.P. **E-mail**:vasanthavasu146@gmail.com

ARTICLE INFO

Key words:

RP-HPLC, Duloxetine, Mecobalamin, Method development, Validation

ABSTRACT

The main objective of this work is to develop a simple, fast, accurate, precise, rugged and linear Reverse Phase High Performance Liquid Chromatographic (RP-HPLC) method for simultaneous estimation of Duloxetine and Mecobalamin in tablets and validate as per ICH guidelines. The optimized method uses a reverse phase column, Inertsil-ODS C₁₈(250 x 4.6 mm, 5µ) a mobile phase of potassium dihydrogen methanol: phosphate buffer (pH 4): in the proportion of 80:20v/v, flow rate of 1.0/min and a detection wavelength of 254 nm using a Photo diode array detector(2996). The developed method resulted in 2.956min for Duloxetine and 3.538 for Mecobalamin, having a run time of 10 minutes. Duloxetine and Mecobalamin exhibits linearity 50µg/ml-150µg/ml. % Relative standard deviations of system, intraday and ruggedness were found to be less than 2 for both the drugs. Percentage Mean recoveries were found to be in the range of 90-110, during accuracy studies by absolute method. A simple, fast, accurate, precise, linear and rugged RP-HPLC method was developed for simultaneous quantitative estimation of Duloxetine and Mecobalamin in capsules and validated as per ICH guidelines. Hence it can be used for the routine analysis of Duloxetine and Mecobalamin tablets in various pharmaceutical industries.

INTRODUCTION:

Analytical chemistry is a science deals with the identification, characterization and estimation of the compounds in the sample. The primary interest of an analytical chemist is to develop experimental methods of measurement to obtain information about the qualitative and quantitative tests for a given sample^{1,2}. Before selecting the method the technical approach to solving the problem requires the analyst to consider the analytical information, required level of accuracy, cost, timing and availability of instruments and facilities³. High performance liquid chromatography (HPLC) is a highly improved form of column liquid chromatography. Instead of a solvent being allowed to drip a column under gravity, it is forced through under high pressure of up to 400 atmospheres^{4,5}. That makes it much faster. All chromatographic separations, including HPLC operate under the same basic principle. Separation of a sample into its constituent parts because of the difference in the relative affinities of different molecules for the mobile phase and the stationary phase used in the separation⁶.

Methods are developed for new products when no official methods are available⁷. Alternate methods for existing (non-pharmacopoeia) products are developed to reduce the cost and time for better precision and ruggedness. Trail runs are conducted, method is optimized and validated⁸. Method validation is the process used to confirm that the analytical procedure employed for a specific test is suitable for its intended use⁹. Results from method validation can be used to judge the quality, reliability and consistency of analytical results; it is an integral part of any good analytical practice¹⁰.

DULOXETINE

MECOBALAMIN

Materials and methods:

All chemicals and reagents used were of high quality, purity procured from various sources, phosphate buffer (as per IP), Methanol Merck (HPLC-Grade), Duloxetine and Mecobalamin Reputed pharmaceutical company, Duloxetine and Mecobalamin tablets containing 20/1.5mg, are Purchased from local market Waters - 2690/5, HPLC series with PDA, Inertsil -C18, BDS column, Detector wavelength 254nm, Co-lum Température is ambiant The Optimized chromatographic conditions are listed in Table No 1

Preparation of duloxetine standard solution: Weigh down 10mg's of Duloxetine and dissolved in 10ml of Mobile phase taken in 10ml of volumetric flasks and sonicated for 20 minutes to get 1000ppms and 1 ml was taken from above solution into a 10ml volumetric flask and diluted to 10 ml with mobile phase.

Preparation of Mecobalamin standard solution: Weigh down 10mg is of Mecobalamin and dissolved in 10ml of Mobile phase taken in 10ml of volumetric flask separately and sonicated for 20 minutes to get 1000ppms and 1 ml was taken from above solution into a 10ml volumetric flask and diluted to 10 ml with mobile phase.

Preparation of potassium dihydrogen phosphate buffer:

Solution 1: Weigh accurately 13.61 gm of potassium dihydrogen phosphate dissolved in 1000 ml of HPLC grade water, then the pH is adjusted to 5.5.the solution sonicated for 10 min and filter through 0.45μ m membrane filter.

Solution 2: Weigh accurately 35.81 gm of di sodium hydrogen phosphate dissolved in 1000 ml of HPLC grade water.

Mix 96.4mL of solution 1 and 3.6 mL of solution 2 $\,$

Validation of the Method

The method was validated in terms of system precision, linearity, precision, and specificity of the sample applications. The linearity of the method was investigated with correlation coefficient of Duloxetine and Mecobalamin was found to be 0.999 Precision was found to be lower than 1%. Ruggedness of the proposed method was determined by analysis of aliquots from homogenous slot by different analysts using similar operational and environmental conditions, Placebo interference Sample was prepared by taking the placebo equivalent to about the weight in portion of test preparation as per the test method and blank interference mobile phase was prepared and injected and into the HPLC system, are in Fig No: 1-3

Accuracy: Accuracy of the method was expressed in terms of recovery of added compound at 50%, 100% and 150% level of sample. Mean % recovery and % RSD were calculated and were summarized in Table 2-3. The result shown that best recoveries (99.77 ± 0.04) of the spiked drug were obtained at each added concentration, indicating that the method was accurate.

Fig No 4: Duloxetine Calibration curve

Fig No 5: Mecobalamin Calibration curve

Parameters	Method
Stationary phase (column)	Inertsil-ODS C18(250 x 4.6 mm, 5 µ)
Mobile Phase	Methanol : potassium dihydrogen phosphate (pH 4) (80:20)
Flow rate (ml/min)	1.0 ml/min
Run time (minutes)	10 min
Column temperature (°C)	Ambient
Volume of injection loop (µl)	20
Detection wavelength (nm)	254nm
Drug RT (min)	2.956min for DT and 3.538 for MB.

Table No.1: Optimized chromatographic conditions

Table No.2: Data of Accuracy for Duloxetine

Concentration % of spiked level	Amoun t added	Peak area	Amount found	% Recovery	Statistical Analysis of % Recovery	
	(ppm)		(ppm)		MEAN	%RSD
50% Injection 1	20	11984	20.15	100.75		0.92
50% Injection 2	20	11941	19.86	99.31	99.69333	
50% Injection 3	20	11909	19.80	99.02		
100 %Injection 1	40	12961	39.88	99.70		
100 % Injection 2	40	12974	40.12	100.30	99.83333	0.41
100% Injection 3	40	12952	39.80	99.50		
150% Injection 1	60	13103	60.12	100.21		
150% Injection 2	60	13679	59.76	99.61	99.97333	0.17
150% Injection 3	60	13081	60.06	100.10		

Concentration % of sniked level	Amount added	Peak area	Amount found	% Recov-	Statistical Analysis of % Recovery	
, o or spined iever	(ppm)		(PPm)	er y	MEAN	%RSD
50% Injection 1	20	63381	20.04	100.22		
50% Injection 2	20	63159	19.97	99.85	100.06	0.18
50% Injection 3	20	63317	20.02	100.11	100.00	
100 % Injection 1	40	69459	40.01	100.02		
100 % Injection 2	40	69526	40.05	100.14	100.04	0.091
100% Injection 3	40	69405	39.98	99.96		
150% Injection 1	60	91811	60.08	100.14		
150% Injection 2	60	912614	59.97	99.96	100.02	0.09
150% Injection 3	60	91719	59.98	99.98		

Table No.3: Data of Accuracy for Mecobalamin

		0	•• •		114 11
Table 4: Data of H	Kepeatability (System I	precision) foi	r Duloxetine	and Mecobalamin
			,		

	Injection	Peak Are loxe	as of Du- tine	Peak Areas of mecobalamin		
	injection	Peak area	%Assay	Peak area	%Assay	
Concentration	1	1218805	99.95	674753	98.66	
100ppm	2	1214014	100.24	674261	99.30	
	3	1215474	100.06	675298	101.53	
	4	1227655	99.30	679221	100.53	
	5	1267019	100.00	688636	99.98	
Statistical Analysis	Mean	1228593	99.91	678433.8	100.00	
	SD	22124.07	0.35819	6031.135	1.107678	
	% RSD	1.800764	0.35	0.888979	1.10	

Table.No:5 Data of Repeatability (Method precision) for Duloxetine and Mecobalamin

	Injection	Peak A Dulox	reas of actine	Peak Areas of mecobalamin		
		Peak area	%Assay	Peak area	%Assay	
Concentration	1	1202110	98.6	633495	98.55	
100ppm	2	1203700	99.02	635992	98.88	
	3	1201851	98.12	639828	99.40	
	4	1202255	98.31	639098	99.30	
	5	1203283	98.81	648289	100.53	
	6	1202349	98.36	631322	98.28	
Statistical Analysis	Mean	1202687.6	98.48	637312	99.278	
	SD	771.5483	0.352647	5988.879	0.827236	
	% RSD	0.1358	0.35	0.0891	0.83	

	Injection	Peak Areas of	f Duloxetine	Peak Areas of mecobalamin		
	injection	Peak area	%Assay	Peak area	%Assay	
	1	1202110	98.6	633495	98.55	
Concentration	2	1203700	99.02	635992	98.88	
100nnm	3	1201851	98.12	639828	99.40	
	4	1202255	98.31	639098	99.30	
	5	1203283	98.81	648289	100.53	
	6	1202349	98.36	631322	98.28	
Statistical	Mean	1206333.5	100.19	631322	98.28	
Analysis	SD	771.5483	0.352647	5988.879	0.827236	
	% RSD	0.1358	0.35	0.0891	0.84	

Table 6 Data of Intermediate precision (Analyst 1&II) for Duloxetine and Mecobalamin

Table No.7: Data of Linearity (Duloxetine and Mecobalamin)

Concentration (ppm)	Average area of duloxetine	Average area of mecobalamin
0	0	0
20	1202965	632546
30	1254371	658296
40	1295856	694400
50	1297167	730308
60	1308577	916282
70	1359903	9402046
80	139905	9788277
Slope	5140	18600
Y-intercept	114.7	276.2
Correlation coefficient	1	1

Table No.8: Data of system to system variability (Duloxetine and Mecobalamin)

S. no	Duloxe	etine	Mecobalamin		
	Peak area	Assay %	Peak area	Assay %	
1	1203625	99.98	634360	98.65	
2	1202225	99.30	634098	98.63	
3	1202840	98.60	635696	98.86	
4	1204283	99.30	633289	98.52	
5	1202735	98.55	634147	98.63	
6	1203110	98.73	633495	98.55	
Mean	1203136.3	99.07667	634180.8	98.64	
%RSD	1.35	0.56	0.019	0.12	

	Std Area	Tailing factor		Std Area	Tailing factor		Std Area	Tailing factor
Flore	1273707	1.362089	Flow 1.0 ml	1206349	1.280574	Elerer 1.2	1266195	1.285372
F10W	1273211	1.352617		1205267	1.279932	ml	1265885	1.299385
0.0 III	1273948	1.376926		1205625	1.261721		1266303	1.308063
	1273465	1.345752		1205840	1.276089		1267243	1.274662
	1273862	1.374925		1205735	1.250640		1265762	1.267630
Avg	1273638.6	1.362462	Avg	1205763.2	1.269791	Avg	166277.6	1.287022
SD	3301.369	0.013609	SD	392.1635	0.01314	SD	582.9758	0.016786
%RSD	1.041	0.99	%RS D	0.19	1.03	%RSD	0.35	1.3

Table No. 9: Data for Effect of variation in flow rate (Duloxetine)

Table No.10: Data for Effect of variation in flow rate (Mecobalamin)

	Std Area	Tailing factor		Std Area	Tailing factor	ы	Std Area	Tailing factor
	620286	1.322089	F 10	634322	1.604878	F 10	602077	1.285372
	619282	1.331920	W 10	635792	1.584354	W 1.2	601854	1.319385
1111	621337	1.296438	1.0 ml	634360	1.543805	1.2 ml	602403	1.292055
	620456	1.315454		635696	1.568590	1111	603421	1.304561
	620765	1.326551		633147	1.559986		602465	1.294621
Avg	620425	1.31849	Avg	634663.4	1.572323	Avg	602444	1.299199
SD	754.0018	0.013728	SD	1100.917	0.023367	SD	599.8833	0.013223
%RSD	0.086	1.04	%R SD	0.184	1.48	%R SD	0.09	1.01

Repeatability

The % Relative standard deviations of Duloxetine and Mecobalamin for Repeatability was found to be 0.35 and 1.10 .Hence the %RSD values indicate a good degree of precision within the specified range. The results are tabulated in Table No 4

Method precision

Precision of the assay method was determined by injecting, six (6) individual samples, in duplicate, of Duloxetine and Mecobalamin.The results are tabulated in Table No 5.

Intermediate precession:

The % Relative standard deviations of Duloxetine and Mecobalamin for Intermediate precession was found to be 0.35 and 0.83.Hence the %RSD values indicate a good degree of precision within the specified range. The results are tabulated in Table No 6.

System Precision Ruggedness

The standard and sample solutions prepared by analyst-1 and analyst-2 are injected in different HPLC systems, on different day, using a different column. The system suitability parameters calculated by analyst -2 can be compared with those of Analyst -1. The results were tabulated in Table 8. These results indicated that the developed method is rugged.

Linearity

The linearity range of Duloxetine and Mecobalamin was evaluated by varying concentrations of standard solutions were injected into HPLC system. The linearity graph was plotted from (Fig:4-5). A calibration curve was constructed for each sample by plotting the peak area obtained the concentration. The correlation coefficient for the data was calculated as 0.999. The regression line were observed to be in the form of y = 5140x - 114.7. The linearity data for Duloxetine. The regression line were observed to be in the form of y = 18600x - 276.2 and Mecobalamin are presented in Table 7.

Robustness

Small changes in flow rate, composition of mobile phase and temperature, performed the robustness of method. Robustness was studied using three replicates of concentration level at 100%. The % RSD in robustness study was less than 2%, his indicates that the method is precise, accurate and robust, the results are tabulated in 9-10.

CONCLUSION

The present proposed RP-HPLC method for the assay of Duloxetine and Mecobalamin in tablet formulation was validated as per ICH Q2(R1) guideline and it meets to specific acceptance criteria. It is concluded that the developed method was specific, precise, linear, accurate, robust, cost effective and it proves all validation characteristics and it can be effectively applied for routine analysis in research institutions, quality control department in industries.

ACKNOWLEDGEMENT:

The authors thank Sri. C. Gangi Reddy, Founder, Annamacharya Educational Trust for providing all the facilities for graduate studies and dissertation work. They also thank reputed pharmaceutical company (P) Ltd. (India), for providing the gift sample of Duloxetine and Mecobalamin.

REFERENCES:

- Fundamentals of Analytical Chemistry, 8th Edn., Skog, West, Holler, Crouch, BBN Printers, Haryana, India. 2007
- Quantitative Analysis, RA. Day, AL. Underwood, 6th Edn., Prentice Hall of India, New Delhi, 2005.
- Pharmaceutical Drug Analysis, 2nd Edn., New Age International (P) Ltd, New Delhi, India, 2005.
- 4. Furmiss BS, Nash RA. *Vogel's Text Book* of *Practical Organic Chemistry*, 5th edition. London: Lonman group LTD, 1989, pp. 165-169.
- Remington, The Science & Practice of Pharmacy Vol. I, 20th Edition. B.I. publication pvt. Ltd, pp. 587-613.
- Braithwaite A, Smith FJ. Chromatographic Methods, 5th edition. Netherlands: Kluwer Academic Publishers, 1999.

- 7. Ranjit Singh, HPLC Method development & Validation overview, JPER, 2013
- Fundamentals of Analytical Chemistry, 8th Edn., Skog, West, Holler, Crouch, BBN Printers, Haryana, India. 2007.
- 9. International Conference on Harmonisation Guideline on Impurities in New Drug Products; Q3B (R2), 2006.
- 10. International Conference on Harmonisation Guideline on Validation of Analytical Procedures: Text and Methodology; Q2 (R1), 2005.