(Research Article)

J (JGTPS

Journal of Global Trends in Pharmaceutical Sciences

Journal home page: www.jgtps.com

SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF QUINAZOLINE-4-ONE ANALOGS

*M. Venkata Ramana Reddy Nadendla Rama Rao¹ R.Raja Reddy² R.Suthakaran³

*^{&2} Malla Reddy Pharmacy College, Dhulapally, Secunderabad

¹Acharya Nagarjuna University, Guntur, Andhra Pradesh

³Vijaya College of Pharmacy, Munaganoor (V), Hayath nagar, Hyderabad

ABSTRACT

In the present investigation, we have endeavoured to introduce phenyl at 2^{nd} position of phenylquinazoline-4(3*H*)-one moiety and H/ *o*-OH/ *p*-(CH₃)₂N in benzyl- lidene-4, 5-dihydro-5-oxo-2-phenylimidazol moiety with a view to evaluate them for possible antioxidant, anti-inflammatory, H₁-antihistaminic and antitumor activities. Hence, the synthesis of substituted 3-(2-((16Z)-4- H/ OH/ (CH₃)₂N- benzyl- idene-4, 5-dihydro-5-oxo-2-phenylimidazol-1-yl) ethyl)-2-phenylquinazolin-4(3*H*)-one. RS2, RS5, RS8) and 3-(2-((16Z)-4- H/ OH/ (CH₃)₂N-benzylidene-4, 5-dihydro-5-oxo-2-phenylimidazol-1-yl) ethyl)-2-phenyl-6,8-dibromoquinazolin-4(3*H*)-one (RS11,RS14, RS17) has been undertaken. All the compounds were characterised and biologically evaluated. Selective compounds shown significant biological actions.

Keywords: quinazoline-4-one analogs, spectral analysis, antioxidant, antiinflammatory, H₁-antihistaminic and antitumor activities.

INTRODUCTION

Hetero cyclic chemistry research reached in all areas of drug discovery in recent days. More than three fourth of the bioactive drugs available in the market are all hetero cycles. Quinazolinone molecules were the superior lead molecules for the drugs from past immemorial. They involved in the skeleton of nearly 150 phytoconstituents.¹ Thus in the present investigation, imidazoloquinazolinone and quinoloquinazolinones are chosen as the heterocyclic systems and a known pharmacophore with antioxidant, H₁-antihistaminic activity, antiinflammatory and antitumor agents such as ethyl diamino imidazolines and ethyl diaminoquinoline group is built into position 3 of the quinazolinone nucleus.

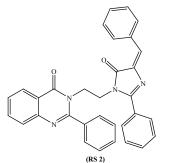
MATERIALS AND METHODS Synthesis

General scheme of 3-(2-((16Z)-4-subs.benzylidene-4, 5-dihydro-5-oxo-2-phenylimidazol-1-yl) ethyl) 6, 8dibromo/unsubs.-2-phenylquinazolin-4(3H)-one Spectral analysis

IR spectra will be done on a JASCO FT/IR-5300 spectrometer. Mass spectra will be taken with a Hewett Packard model 5989B. NMR spectra will be taken on a Varian Gemini-2000 (500 MHz) spectrometer.

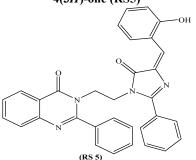
Address for correspondence

M. Venkata Ramana Reddy* Malla Reddy Pharmacy College Dhulapally, Secunderabad mvrr.pharmacy@gmail.com Mobile: +91-9989561132

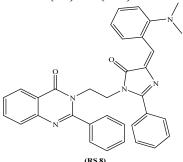

Pharmacological evaluation

Literature survey revealed diverse biological and pharmacological significance of several nitrogen heterocyclic. This aspect has been drawing the attention of many scientists towards exploiting the biological importance of various heterocyclic compounds and to establish the relationship between their pharmacological potency and structural features. All the animals wherever used for pharmacological evaluations were procured from Malla Reddy Pharmacy College, Secunderabad, Andhra Pradesh, India and were obtained Institutional Animal Ethical Committee (IAEC) permission for all standard protocols Reg.No.1447/a/11/CPCSEA.

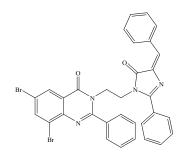
The compounds were screened for *In vitro* antioxidant assay by DPPH free radical scavenging method², antihistaminic activity by *In vitro* and *In vivo* method^{3, 4, 5}, carrageenan induced paw edema of antiinflammatory⁶ activity and pylorus ligation induced gastric ulcers⁷ and antitumor assay by MTT method in cancer cell lines of A-549⁸, Vero⁹ and HBL-500 cell¹⁰. All the animal experiments were done by the standard procedures and the results obtained were calculated and tabulated.


RESULTS AND DISCUSSION

Spectral data's 3-(2-((16E)-4-Benzylidene-4,5-dihydro-5-oxo-2phenylimidazol-1-yl) ethyl) -2-phenyl quinazolin-4(3H)-one (RS2)

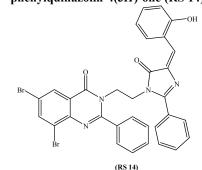

M.W. 496.56; M.F. $C_{32}H_{24}N_4O_2$; Yield 72%; M.P. 314°C; R_f 0.49; IR (KBr) cm⁻¹:3120 (Ar-NH), 3014(Ar), 1658(C=O),1527 (CH); ¹H NMR (CDCl₃): 0.85 (s, 3H, CH₃), 3.6 , 3.8 (t, 2H, CH₂), 7.64(d, 1H, =CH-); EI-MS (70 eV) [m/z, %] : 77,79,144, 221, 247, 249, 419, 496, 495, 498. Elem. Anal. Calc'd for $C_{32}H_{24}N_4O_2$: C, 57.33; H, 3.31; Br, 23.84 N, 8.16; O, 7.36. Found: C, 57.53; H, 3.11; Br, 23.84; N, 8.16; O, 7.36.

3-(2-((16E)-4-(2-Hydroxybenzylidene)-4,5-dihydro-5oxo-2-phenylimidazol-1-yl)ethyl)-2-phenylquinazolin-4(3H)-one (RS5)

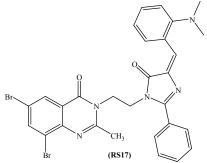


M.W. 512.56; M.F. $C_{32}H_{24}N_4O_3$; Yield 79%; M.P. 317 ^oC; R_f 0.48; IR (KBr cm⁻¹):3380 (Ar-OH), 3010(Ar-H), 3013(Ar)1657(C=O), 1521 (Lactone). Elem. Anal. Calc'd for $C_{32}H_{24}N_4O_3$: C, 74.99; H, 4.72; N, 10.93; O, 9.36. Found: C, 74.79; H, 4.92; N, 10.63; O, 9.66.

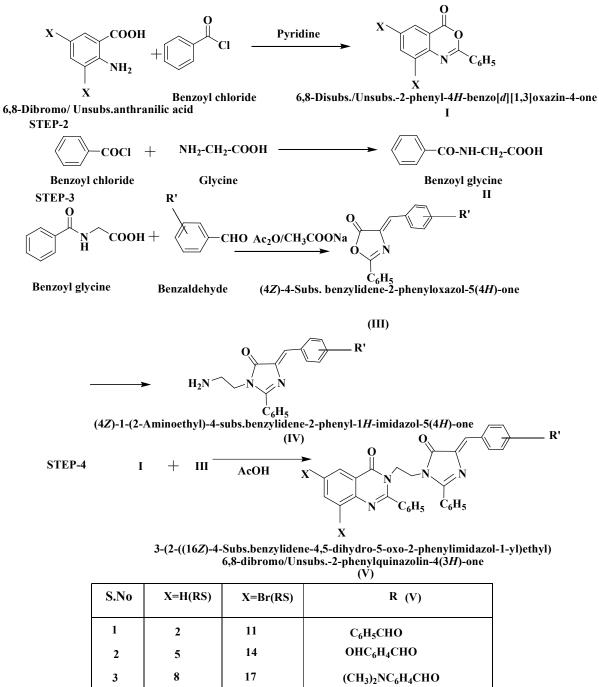
3-(2-((16E)-4-(2-(Dimethylamino)benzylidene)-4,5dihydro-5-oxo-2-phenylimidazol-1-yl) ethyl)-2phenylquinazolin-4(3*H*)-one (RS8)


M.W. 539.63; M.F. $C_{34}H_{29}N_5O_2$; Yield 79%; M.P. $314^{0}C$; R_f 0.51; IR (KBr cm⁻¹): 3322(Ar-NH), 3013(Ar), 1656(C=O), 1523 (Lactone); Elem. Anal. Calc'd for $C_{34}H_{29}N_5O_2$: C, 75.68; H, 5.42; N, 12.98; O, 5.93. Found: C, 75.48; H, 5.63; N, 12.78; O, 6.13. 3-(2-((16E)-4-Benzylidene-4,5-dihydro-5-oxo-2phenylimidazol-1-yl)ethyl)-6,8-dibromo-2phenylquinazolin-4(3*H*)-one (RS11)

(RS11)


M.W.654; M.F. $C_{32}H_{22}Br_2N_4O_2$; Yield 94%; M.P. 297 ⁰C; R_f 0.44; IR (KBr cm⁻¹): 3332 (Ar-NH), 3012(Ar), 1652(C=O), 1522(Lactone); Elem. Anal. Calc'd for $C_{32}H_{22}Br_2N_4O_2$: C, 58.74; H, 3.39; Br, 24.42; N, 8.56; O, 4.89. Found: C, 58.54; H, 3.59; Br, 24.22; N, 8.36; O, 5.09.

3-(2-((16E)-4-(2-Hydroxybenzylidene)-4,5-dihydro-5oxo-2-phenylimidazol-1-yl)ethyl)-6,8-dibromo-2phenylquinazolin-4(3H)-one (RS 14)


M.W. 670.35; M.F. $C_{32}H_{22}Br_2N_4O_3$; Yield 94%; M.P. $302^{0}C$; R_{f} 0.49; IR (KBr cm⁻¹): 3332 (Ar-NH), 3012(Ar), 1652(C=O), 1522(Lactone). Elem. Anal. Calc'd for $C_{32}H_{22}Br_2N_4O_3$: C, 57.33; H, 3.31; Br, 23.84; N, 8.36; O, 7.16. Found: C, 5753; H, 3.11; Br, 23.84; N, 8.16; O, 7.36.

3-(2-((16E)-4-(2-(Dimethylamino)benzylidene)-4,5dihydro-5-oxo-2-phenylimidazol-1-yl)ethyl)-6,8dibromo-2-methylquinazolin -4(3*H*)-one (RS17)

M.W. 635.35; M.F. $C_{29}H_{25}Br_2N_5O_2$; Yield 94%; M.P. 307⁰C; R_f 0.48; IR (KBr cm⁻¹): 3321 (Ar-NH), 3011(Ar), 1658(C=O), 1522(Lactone). Elem. Anal. Calc'd for $C_{29}H_{25}Br_2N_5O_2$: C, 54.82; H, 3.97; Br, 25.15; N, 11.02; O, 5.04. Found: C, 54.62; H, 4.17; Br, 25.05; N, 11.12; O, 5.04.

STEP 1

X=H, Br

Pharmacological screening

The antioxidant activities of the compounds were determined by the DPPH free radical scavenging

assay. All the compounds shown significant antioxidant activity against the DPPH. The test compounds were compared with the standard drug ascorbic acid.

 Table 1: DPPH radical scavenging activity of 3-(2-((19Z)-4-subs.-benzylidene- 4, 5-dihydro- 5- oxo-2-phenylimidazol-1yl) ethyl)-6, 8-dibromo-2-subs Quinazolin -4(3H)-one

C0M	% Scavenging								
	10μg/mL	25μg/mL	50μg/mL	100µg/mL	250µg/mL	500µg/mL			
RS2	26.098±5.198	35.534±0.8255	44.92±3.275	53.86±2.756	62.804±2.162	81.046±1.109			
RS5	23.27±4.836	34.652±1.553	42.506±3.299	51.934±2.799	61.426±2.356	80.328±1.452			
RS8	15.818±5.778	32.316±2.044	37.92±3.71	45.282±3.59	52.558±3.387	74.298±2.841			
RS11	16.688±5.551	25.418±1.744	33.96±2.277	40.626±0.2793	50.118±1.694	74.348±1.112			
RS14	20.154±0.8547	28.17±0.1012	39.916±0.835	49.798±0.8286	59.686±0.8266	79.448±0.8211			
RS17	19.954±0.8483	29.742±0.8355	39.524±0.8271	49.31±0.8247	59.096±0.8155	78.668±0.8127			
STD	49.908±2.719	59.726±2.335	67.636±2.335	77.454±1.504	87.272±1.584	94.8±0.1871			

* % Inhibition= (C-T) / C x 100, C- Control absorbance, T- Test absorbance.

Significant levels p < 0.01 as compared with the respective control

^a Each value represents the means \pm SD (n=6)

In vivo antihistaminic action was evaluated by histamine aerosolisation induced bronchoconstriction in guinea pigs. The animals showed better protection time after the test compounds administration. The time elapsed for breathing normal was more when compared with

standard drug Cetrizine. *In vitro* bioassay for histaminic action was performed in guinea pig ileum was shown reduction in the contraction of the smooth muscle. Hence, the blocking of the histaminic receptors

Table 2: H ₁ -Antihistaminic activity of 3-(2-((16Z)-4-subsbenzylidene-4, 5-dihydro-oxo-2-phenylimidazol-1-yl)
ethyl) -6, 8-H/dibromo-2-methylauinazolin -4(3H)-ones

etnyi) -0, 8-H/dibromo-2-metnyiquinazonn -4(5H)-ones									
	Substituents			In vivo studies		In vitro studies			
Comp'd	X	R a-c	R' 1-3	T.O.C (Sec)	% Prot'n	(IC ₅₀) (ng/mL) 1x10 ⁻³	% CNS Depr't		
RS2	Η	C 6H5	C_6H_5	1058±7.021	91.68	4.24	5.14		
RS5	Η	C_6H_5	C ₆ H ₄ OH	1079±5.657	91.84	4.2	3.78		
RS8	Η	$C_6 H_5$	$C_6H_4N(CH_3)_2$	1130±7.211	92.21	1.9	4.92		
RS11	Br	C_6H_5	C_6H_5	1062 ± 5.050	91.72	1.7	4.38		
RS14	Br	C_6H_5	C ₆ H ₄ OH	1089±6.221	91.92	1.8	3.65		
RS17	Br	C_6H_5	$C_6H_4N(CH_3)_2$	1120±6.943	92.14	1.75	2.96		
Control				88±0.8367					
CPM				1232±11.454	92.86	1	19.4		
CTZ							7.46		

*Comp'd= Compound, T.O.C = Time of onset of convulsant, % Prot'n = % Protection, % CNS Depr't = % CNS depressant, CPM= Chlorpheneramine maleate, CTZ= Cetrizine,

The compounds shown anti inflammatory activity against carrageenan induced paw oedema compared with the standard drug Indomethacin.

 Table 3: Percent protection antiinflammatory activity of quinazoline-4(3H)-one analog

Comp?d	% Protection						
Comp'd	30 min	1 h	2 h	3 h			
RS2	34±1.871	47 ± 1.633	52 ± 1.472	34 ± 1.414			
RS11	34±1.472	45 ± 2.074	47±1.722	30 ± 1.871			
STD	46±2.429	53 ± 2.16	65 ± 1.871	43±1.871			

*Comp'd = Compound, Significant levels p < 0.01 as compared with the respective control

^a Each value represents the means \pm SD (n=6)

Also the synthesized compounds shown reduction in the ulcer index and gastric acid secretion in the pylorus ligation induced ulcer in experimental animals. All the compounds were acting against the tumour cells A-549, Vero and HBL-500 cell lines. **Table 4:** Ulcerogenicity index of quinazoline-4(3H)-one

analog							
Comp'd	5	Substitu	Ulcer index				
	Χ	R a-c	R' 1-3	Ulcer muex			
RS2	Н	C 6H5	C ₆ H ₅	0.5 ± 0.01871			
RS11	Br	C ₆ H ₅	C ₆ H ₅	0.6±0.01472			
Control				0.14 ± 0.01414			
Std				1.7 ± 0.0216			
*Significant levels $p < 0.01$ as compared with the							

respective control

^a Each value represents the means \pm SD (n=6)

Comp'd	Substituents			IC _{50 µg/ML}		
	X	R a-c	R' 1-3	Vero	A-549	HBL-100
RS2	Н	$C_{6}H_{5}$	C_6H_5	60.23	23.23	83.19
RS5	Н	$\mathrm{C}_{6}\mathrm{H}_{5}$	C ₆ H ₄ OH	62.11	42.73	212
RS8	Н	$C_6\mathrm{H}_5$	$C_6H_4N(CH_3)_2$	68	41.23	51.87
RS11	Br	$\mathrm{C}_{6}\mathrm{H}_{5}$	C_6H_5	29.86	33	51.98
RS14	Br	$\mathrm{C}_{6}\mathrm{H}_{5}$	C ₆ H ₄ OH	32.43	12.21	61.11
RS17	Br	C_6H_5	$C_6H_4N(CH_3)_2$	23.7	12.32	53.22
STD				4.7	3.2	25

Table 4: Antitumor activity of 3-(2-((19Z)-4-subs.benzylidene-4,5-dihydro-5- oxo-2-phenylimidazol-1-yl) ethyl)-6 8-H/dibromo-2-subs quinazolin- (3*H*)-ones

CONCLUSION

Microwave heating is a very efficient energy source and can be used significantly to reduce reaction time of numerous organic reactions. It allows preparation of many numb-ers of compounds at the same time in the microwave cavity. Therefore, it is very useful in parallel synthesis and combinatorial synthesis. All the tested compounds exhibited remarkable biological activities.

REFERENCES

- K. N. Myangar, T. N. Akhaja, D. R. Naik And J. P. Raval, Novel Piperazinyl-Quinazoline-4-one Analogs: Design, Synthesis and Evaluation of *In Vitro* Biological Activity, Chem Sci Trans., 2012, 1(3), 688-696.
- Nesterova NO, Kovalenko SI, Karpenko OV and Belenichev IF. Synthesis and antioxidant activity of 4-ylidenehydrazinoquinazolines. *Farm Zhurnal* 2004; (1): 5-10.
- 3. Lemura R, Hori M, Saito T and Ohtaka H. Bioisosteric transformation of H₁-antihistaminic

benzimidazoles, their 4(3*H*)-quinazolinone analogues. *Chem Pharm Bull* 1989; 37: 2723.

- 4. Iemura M Hori, Saito T, and Ohtaka H. Bioisosteric transformations of H₁-anti- histaminic benzimidazoles and compared their activity with those of 4(3*H*)-quinazolin one analogues. *Chem Pharm Bull* 1989; 37: 2723.
- Shafiee SA, Mohamedpour M, Abtahi F, and Khoyi A. Synthesis and antihistaminic potency of 1-[(4-substituted 1, 3, 4-thiadiazol-5-yl) aryl methyl] 4-methylpiperaz- ines. *J Pharm Sci*, 1981, 70, 510.
- 6. Alagarsamy V. Synthesis and pharmacological evaluation of some 3-phenyl-2-substitued-3*H*-quinazoline-4-one as analgesic, anti-inflammatory agents. *Bio-Org & Med Chem* 2007; 15: 235-41.
- Hung Teljes . Process for producing quinazoline derivatives optionally condensed with oxazine or pyrazine rings and pharmaceutical preparations inhibiting tumor growth and enzyme activation containing said compounds as an active agent. HU 68786 A2 28 Jul 1995; 14.
- Himmelsbach Frank, Dahmann Georg, Von Rueden Thomas and Metz Thomas. Imidazo [4,5g]quinazolines, pharmaceuticals containing them, their use as an antitumor agents and process for their preparation. Ger. Offen. DE 19510019, A1 26 Sep 1996; 18.
- Ham Young Jin, Gong Ji Hyeon, and Cha Mi Young. Preparation of quinazoline derivatives as inhibitors of epidermal growth factor receptor and growth of cancer cells. PCT Int. Appl. WO 2006071017 A1 6 Jul 2006; 196.
- Srivastava Sanjay K, Jha Amrita, Agarwal Shiv K, Mukherjee Rama, and Burman Anand C. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives. *Anti-Cancer Agents Medi Chem* 2007; 7(6): 685-709.

How to cite this article:

*M. Venkata Ramana Reddy, Nadendla Rama Rao, R.Raja Reddy, and R.Suthakaran: Synthesis, Characterization and Biological Screening of Quinazoline-4-one Analogs 5(4): 2233-2237 (2014)

All © 2010 are reserved by Journal of Global Trends in Pharmaceutical Sciences.