

ISSN- 2230-7346 Journal of Global Trends in Pharmaceutical Sciences

SYNTHESIS, CHARACTERIZATION AND ANTI MICROBIAL EVALUATION OF NOVEL 2, 2^I, 2^{II}- [1, 3, 5-TRIAZINE-2, 4, 5 TRIYLBIS (SULPHANYL)] TRIS (PHENYL ETHAN-1-ONE)

Spoorthi Pohar^{1*}, P. Shashikala²

¹Research Scholar, Department of Pharmacy, Osmania University ,Hyderabad, India ²ResearchSupervisor,Dept.Of Pharmacy, University college of Technology, Osmania University, Telangana.

*Corresponding author Email: shashikalapatangay22@gmail.com

ARTICLE INFO

Key words: 1,3,5triazine, Antibacterial, Antifungal, Discdiffusion.

ABSTRACT

The wide spectrum of biological activity of triazine moiety has attracted attention in the field of medicinal chemistry. From Extended literature avowed the indisputable antimicrobial properties of triazines that stimulated us to the current exploration for the synthesis of novel 2,2^I,2^{II}-[1,3,5-triazine-2,4,5triylbis(sulphanyl)]tris(phenyl ethan-1-one) derivatives. Nucleophilic substitution of chlorine atoms in cyanuric chloride (1) with benzyl mercapten 1(a)yield 6-(benzylsulfanyl)-1,3,5-triazine-2,4-dithiol (2) upon treatment with, potassium thioacetate, yielded dithiol(3)upon subsequent treatment with derivatives of phenacyl bromide yielded our targeted compounds 4(i-iii) and 5(ia-iiic,iia-iic,iiia-iiic).Novel 2,2^I,2^{II}-[1,3,5-triazine-2,4,5triylbis(sulphanyl)]tris(phenyl ethan-1-one) derivatives 5(ia-iiic,iiaiic,iiia-iiic)were synthesized in adequate yields and characterization of the molecules was done by detailed spectral analysis using advanced analytical support. The titled compounds were screened for antibacterial and antifungal activities. Results proclaimed that all the synthesized compounds were exhibiting antimicrobial properties. Compounds and were contended to bear potent antimicrobial properties against the given bacterial andfungal strains. Synthesized 2,2^I,2^{II}-[1,3,5-triazi ne2,4,5triylbis(sulphanyl)]tris(phenyl ethan-1-one) derivatives displayed noticeable antimicrobial potential and further studies are need to develop these molecules as a lead compounds for antimicrobial activity.

INTRODUCTION

Triazines are six-membered aromatic heterocycles with three carbon and three nitrogen atoms. The 1,3,5-triazines are the oldest and most well-known of the isomeric forms. Triazine is very stable in the heat unless it is heated above 600°C, at which point it breaks down into hydrogen cyanide. The triazine ring is not very easy to change with an electrophile. With nucleophiles, it is effortless to break the ring.

It is also susceptible to hydrolysis by water and other hydroxyl compounds to a lesser extent. Many different heterocycles can be made from 1,3,5-triazine by treating it with bifunctional amines or other compounds, and it can be used instead of HCN in some reactions. According to a general rule, which changes depending on the nucleophile, the first substitution occurs between 0 and 5°C; the second occurs between 35 and 42°C, and the third occurs between 70 and 100°C [4-8]. This means that three different nucleophiles can be added to the same triazine core, giving many possible triazine derivatives and applications. There has been a rise in multidrug resistant pathogens, which makes treating bacterial infections more difficult.

Antiprotozoals, anticancer, oestrogen receptor modulators, antimalarials, Cyclin-dependent kinase inhibitors (CDK) inhibitors (14), and antivirals are just a few of the many things that triazine derivatives have been used for in the past. It has been said that s-triazine derivatives have potent antimicrobial properties [16–20].We report on the synthesis and antibacterial properties of several triazine derivatives as part of our work.

STEP1:

General procedure for the Synthesis of 2-(benzylsulfanyl)-4, 6-dichloro-1, 3, 5triazine (2):

In a 50 ml glass RB flask, to a stirred solution of Cyanuric chloride (1.04 g, 5.64 mmol), (1) in THF (50 mL) was added diisopropyl ethylamine (DIPEA)(1.06 ml) at 0°C. Benzyl mercaptan,(1a) was added at 0°C then allowed to warm to room temperature and continued to stir for 16h. Workup: The reaction mixture was concentrated in vacuo to give crude mixture. Purification by silica gel column using 0-3% ethyl acetate/hexane provided the desired compound (2.3g) (2) as colourless syrup. Reaction progress was checked by TLC plates using 10 %ethyl acetate in hexane (9:1) as the mobile phase.

STEP2:

General procedure for the synthesis of 6-(benzylsulfanyl)-1, 3, 5-triazine-2, 4-dithiol (3)

In a 50 ml glass RB flask, to a stirred solution of 2-(benzylthio)-4,6-dichloro-1,3,5-triazine (2) in Ethanol(EtOH) was added Potassium thioacetate(2a) and stirred for 30 minutes. Then NaOH (305 mg, 7.6 mmol) dissolved in 2 ml of water was added and continued for stirring for 16h. Work up: The reaction mixture was concentrated to remove ethanol. The crude mixture was extracted with diethyl ether to remove nonpolar impurities. The aqueous layer was neutralized using 1N HCl and extracted with ethyl acetate to give desired thiol (100 mg)(3), which was used further without purification.

STEP3:

General procedure for the Synthesis of step 4 (i-iii):2-{[4-(benzylsulfanyl)-6-sulfanyl-1,3,5triazin-2-yl]sulfanyl}-1-(4-methylphenyl) 2-{[4-(benzylsulfanyl)-6ethan-1-one(4i) sulfanyl-1,3,5-triazin-2-yl]sulfanyl}-1-(4bromophenyl)ethan-1-one (4ii) 2-{[4-(benzylsulfanyl)-6-sulfanyl-1, 3, 5-triazin-2yl]sulfanyl}-1-(chlorophenyl)ethan-1one(4iii) In a 50 ml glass RB flask,to a solution of 6-(benzylthio)-1,3,5-triazine-2,4dithiol (3) in acetonitrile(5 mL)was added K2CO3(103 mg) followed by 2-bromo-1tolyl-ethanone(0.003moles)(3a),Phenacyl Bromide (74 mg,0.003moles)(3b) and 4-Chloro phenacyl bromide(0.003moles)(3c) at 0oC. The reaction was allowed to stir for 3h at room temperature to produce the desired products as respectively as 4(i-iii) TLC indicated only polar spot. STEP4: General procedure for Synthesis of step 5 (iaic): 2-{4-[(4-methyl phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2yl]sulfanyl}-1-(4-methylphenyl)ethan-1-one (5ia) 2-{4-[(4-bromo phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2yl]sulfanyl}-1-(4-methylphenyl)ethan-1-one (5ib) 2-{4-[(4-chloro phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2yl]sulfanyl}-1-(4-methylphenyl)ethan-1-one (5ic) То the stirred solution of2-{[4-(benzylsulfanyl)-6-sulfanyl-1,3,5-triazin-2yl]sulfanyl}-1-(4-methylphenyl)ethan-1one(4i) , acetonitrile(5 mL)was added K2CO3(103 mg) followed by 2-bromo-1tolyl-ethanone(0.003moles)(4a), Phenacyl Bromide (74 mg,0.003moles)(4b) and 4-Chloro phenacyl bromide(0.003moles)(3c) at 0oC (4c) at 0oC. The reaction was allowed to stirr for 8h at room temperature to produce desired compounds respectively 5(ia-ic)

Work up: The reaction was diluted with water and extracted with ethyl acetate (2x), the combined organic layer was dried over Na2SO4 and concentrated in vacuo to give crude compound. Purification by Silicagel

6-

column using 0-10% ethylacetate/hexane provided the polar spot

STEP 5 (IIA-IIC): 2-{4-[(4-methyl

phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2-yl]sulfanyl}-1-(4-

bromophenyl)ethan-1-one (5iia)

2-{4-[(4-bromo phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2-

yl]sulfanyl}-1-(4-bromophenyl)ethan-1-one (5iib)

2-{4-[(4-chloro phenyl)1-oxo-methyl}-{(benzylsulfanyl)}-1,3,5-triazin-2-

yl]sulfanyl}-1-(4-bromophenyl)ethan-1-one (5iic)

To the stirred solution of 2-{[4-(benzylsulfanyl)-6-sulfanyl-1,3,5-triazin-2yl]sulfanyl}-1-(4-bromophenyl)ethan-1-

one(4ii) acetonitrile(5 mL)was added K2CO3(103 mg) followed by 2-bromo-1tolyl-ethanone(0.003moles)(4a), Phenacyl Bromide (74 mg,0.003moles)(4b) and 4-Chloro phenacyl bromide(0.003moles)(4c) at 0oC. The reaction was allowed to stirr for 8h at room temperature to produce desired compounds respectively 5(iia-iic). Then the reaction was stirred for overnight. Then, 2-Bromo-1(p-tolyl)ethenone (79 mg.0.003 moles) was added to the above mixture and continued for 8h. Purification by Silicagel column using 0-10% ethylacetate/hexane provided the polar spot.

GENERAL PROCEDURE FOR SYNTHESIS OF STEP 5 (IIIA-IIIC):

2-{4-[(4-methyl phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2-

yl]sulfanyl}-1-(4-chlorophenyl)ethan-1-one (5iiia)

2-{4-[(4-bromo phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2-

yl]sulfanyl}-1-(4-chlorophenyl)ethan-1-one (5iiib)

2-{4-[(4-chloro phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2-

yl]sulfanyl}-1-(4-chlorophenyl)ethan-1-one (5iiic)

To the stirred solution of 2-{[4-(benzylsulfanyl)-6-sulfanyl-1,3,5-triazin-2yl]sulfanyl}-1-(chlorophenyl)ethan-1-one

(4iii) acetonitrile(5 mL)was added K2CO3(103 mg) followed by 2-bromo-1tolyl-ethanone(0.003moles)(4a), Phenacyl Bromide (74 mg,0.003moles)(4b) and 4-Chloro phenacyl bromide(0.003moles) (4c) at 0oC. The reaction was allowed to stirr for 8h at room temperature to produce desired compounds respectively 5(iiia-iiic) Work up: The reaction was diluted with water and extracted with ethyl acetate(2x), the combined organic layer was dried over Na2SO4 and concentrated in vacuo to give crude compound. Purification by Silicagel column using 0-10% ethylacetate/hexane provided the polar spot

IN VITRO ANTIBACTERIAL ACTIVITY:

Was evaluated using disc-diffusion method against gram positive bacteria(Bacillussubtilis,Bacilluspumilus,Ba cilluscereus, and Staphylococcusaureus) and gram-negative bacteria (Escherichiacoli, Pseudomonas aeurogonsa, Proteusvulgaris and Serratia marceseans). Ampicillin(100µg/ml)in DMSO was used as reference antibiotics. Nutrient agar medium was taken in the pre-sterilized petri-dishes and the microorganisms were grown by of inoculating 0.5ml spore suspension(108spores/ml)culture broth. A stock solution for all the prepared 5(ia-iiic,iia-iic,iiia-iiic) compounds was made by using DMSO. The disc (6 mm in diameter) was stuffed with 200 µg/ml, 100 µg/ml and 50 µg/ml of each test solution, placed on the seeded Nutrient agar medium and the petri-dishes were incubated at 37°Cfor24hr.DMF alone was used as control at the equal preceding concentration. Zone of inhibition of each compound was recorded in mm. The experiment was done in triplicates.

In vitro anti fungal activity: Nystatin $(10\mu g/ml)$ in DMSO were used as reference antibiotics .Potato dextrose agar medium was taken in the pre-sterilized petri-dishes and the microorganisms were grown by inoculating the standard suspension of culture broth. A stock solution for all the prepared compounds 5(ia-iiic,iia-iic,iia-iic) was made by using DMSO. The disc (6 mm in diameter) was stuffed with 200 µg/ml 100µg/ml and 50µg/ml of each test solution, placed on the seeded potato dextrose agar medium and the

petri-dishes were incubated at 28°C for 48 hr. DMF alone was used as control at the equal preceding concentration. Zone of inhibition of each compound was recorded in mm. The experiment was done in triplicates.

RESULTS AND DISCUSSIONS Spectral data

2-{4-[(4-bromo phenyl)1-oxo-methyl}- 6-{(benzylsulfanyl)}-1,3,5-triazin-2yllsulfanyl_1_(4-chloronbenyl)ethan_1-one

yl]sulfanyl}-1-(4-chlorophenyl)ethan-1-one (5iiib)

IR spectrum of Compound: Off white crystals, IR (KBr): vmax in cm-1: 3020 Aromatic (C-H) Stretch, 853.89 Aromatic (C-H) Bending, 1607, 1699, 1747 aryl (C=C) 1607 (C=N) Triazine, 1747 aryl (C=O), 1483 methyl (C=O), 1483(C-H) bending -CH2-C=O, 696(C-Br) 1HNMR spectrum of the (in CDCl3) compound has exhibited characteristic proton signals δ (in ppm) at: 7.48 (d, J = 8.3, Ar-H), 7.25(s, Ar-H), 3.84 (t, -CH3), 1.6(t, CH2). $([M+H]^{+})$:FOR 530.74, found 531.74

In vitro antibacterial activity:

All the synthesized 5(ia-iiic,iia-iic,iiiaiiic)derivatives were screened for antibacterial activity against both gram positive(Table2) and gram negative(Table3) bacterial strains. When compared to the reference antibiotic Neomycin sulphate $(10\mu g/ml)$ bydisc-diffusion method,5(iiiaiiic)showed considerable antibacterial activity than 5(ia-ic) and5(iia-iic) series against both gram positive and gramnegative bacteria strains. It is also observed $2,2^{I},2^{II}$ -[1,3,5-triazine-2,4,5triylbis

(sulphanyl)] tris (phenyl ethan-1-one) derivatives sensitive against Staphylococcus aureus. **5iiib** is the most potent antibacterial among all the derivatives and showed maximum growth inhibition with 30mm of zone of inhibition against Staphylococcus aureus followed by **5iiia**, and **5iiic**.

In vitro antifungal activity

profile Antifungal for the prepared compounds was also developed against selected fungal strains (Table4). Interestingly, compounds 5(iiia-iiic)showed significant antifungal activity also than 5(ia-ic) and 5(iia-iic)series against all fungal strains. It is also observed that Candida albicans is more sensitive to the prepared compounds than other strains. 5iicis the most potent antifungal among all the derivatives and showed maximum growth inhibition with 22 mm of zone of inhibition against Candida albicans followed by 5iiia,5iiib,and5iiic.

Gram positive bacteria Staphylococcus **Bacillus subtilis Bacillus pumilus Bacillus cereus** Compound aureus 50µ 50µ 200µ 50µ 50u 100u 200u 100u 200u 100u 100µ 200µ g/ml 5ia 10 16 19 7 10 14 12 16 18 13 17 19 11 15 18 6 12 10 14 17 14 18 20 5ib 9 11 15 19 9 12 15 8 13 15 15 18 21 5ic 20 9 14 17 17 9 14 16 13 18 21 5iia 16 5iib 9 13 16 6 8 11 9 13 16 10 17 20 14 14 5iic 21 26 11 18 22 18 24 15 24 27 25 5iiia 16 27 12 17 21 16 20 23 16 26 29 25 26 23 21 28 30 15 14 20 18 5iiib 12 18 12 21 24 11 17 21 13 23 25 17 25 28 5iiic DMSO 3 2 2 2 Neomycnsulphate 32 34 32 37 10µg/ml

 Table2. Zone of inhibition of the compounds against gram positive bacteria

	Gramnegativebacteria											
	Escherechiacoli			Pseudomonas			Proteusvulgaris			Serratiamarcesea		
Comp				aeurogonsa						ns		
ound	50µg	100µ	200µ	50µg	100µ	200µ	50µg	100µ	200µ	50µg	100 µ	200µ
	/ml	g/ml	g/ml	/ml	g/ml	g/ml	/ml	g/ml	g/ml	/ml	g/ml	g/ml
5ia	12	19	23	4	6	10	7	11	14	9	13	16
5ib	14	22	24	5	9	11	9	12	15	8	11	15
5ic	12	18	21	5	8	10	10	16	18	6	12	14
5iia	11	20	23	4	6	9	8	14	17	7	11	14
5iib	11	19	22	5	8	12	11	15	18	9	12	15
5iic	15	24	<mark>28</mark>	9	15	18	12	19	21	10	21	23
5iiia	13	25	27	10	18	21	13	21	24	14	22	25
5iiib	13	23	25	9	15	18	11	17	21	12	21	24
5iiic	15	16	29	8	14	19	9	18	22	11	22	24
DMSO	3			2			2			3		
Neomy	38			25			29			31		
cinsulp												
hate10												
μg/												
ml												

Table3. Zone of inhibition (mm) of the compounds against gramnegative bacteria

CONCLUSION

We have reported that synthesis of a novel series novel series of 2,2^I,2^{II}-[1,3,5-triazine-2,4,5triylbis (sulphanyl)]tris(phenyl ethan-1one) derivatives 5(ia-ic,iia-iic,iiia-iiic) were synthesized using commercially available starting materials and economically feasible methods. The structure elucidation was done with the help of their physical, analytical, and spectraldata.All 9compounds the were screened for Invitro antimicrobial activity was carried out using both gram positive, gram negative bacterial and fungal strains (Table 2-4) using disc diffusion methods. The average zone of inhibition was measured and compared with the standard drugs, showing significant antimicrobial activities. These new data of the compounds 5iiib and 5iic might be helpful in the future development of triazine based (sulphanyl)]tris(phenyl ethan-1-one) derivatives as novel antimicrobial agents.

Conflict of Interest

Authors disclose no conflict to interest

REFERENCES:

- 1. Smolin, E. M.; Rapoport, L., s-Triazines and Derivatives. Interscience Publishers, Inc.: New York, 1959; Vol. 13, p 644
- 2. Neunhoeffer, H.; Wiley, P. F., Chemistry of 1,2,3-Triazines and

1,2,4-Triazines, Tetrazines, and Pentazines. John Wiley & Sons, Inc.: New York, 1978; Vol. 33, p 1335

- 3. Chang Y, Kim YN, Noh I, Kim C. Synthesis and structural characterisation of hyperbranched poly (benzyl ether) analogs with 1, 3, 5-s-triazine moiety. Macromolecular Chemistry and Physics. 2000 Sep 1;201(14):1808-12.
- 4. Yadlapalli SS, Katari NK, Surya SB, Karra VK, Kommineni V, Jonnalagadda SB. Simultaneous quantification of lidocaine and prilocaine in human plasma by LC-MS/MS and its application in a pharmacokinetic human study. Practical laboratory medicine. 2019 Nov 1.
- 5. Kumar A, Srivastava K, Kumar SR, Siddiqi MI, Puri SK, Sexana JK, Chauhan PM. 4-Anilinoquinoline triazines: A novel class of hybrid antimalarial agents. European journal of medicinal chemistry. 2011 Feb 1;46(2):676-90.
- 6. Kommineni V, Chowdary KP, Prasad SV. Development of a new stability indicating RP-HPLC method for simultaneous estimation of Metformin hydrochloride and Teneligliptin hydrobromide and its

validation as per ich guidelines. Indo American Journal of Pharmaceutical Sciences. 2017 May 1;4(5):1109-19.

- 7. Osman SM, Alasmary FA, Kenawy ER, Aly ES, Khattab SN, El-Faham A. Synthesis, characterization and comparative thermal degradation kinetics of s-Triazine based polymers. Journal of Polymer Research. 2021 Aug;28(8):1-2.
- Wystrach VP, Kaiser DW, Schaefer FC. Preparation of ethylenimine and triethylenemelamine. Journal of the American Chemical Society. 1955 Nov;77(22):5915-8.
- Baliani A, Bueno GJ, Stewart ML, Yardley V, Brun R, Barrett MP, Gilbert IH. Design and synthesis of a series of melamine-based nitroheterocycles with activity against trypanosomatid parasites. Journal of medicinal chemistry. 2005 Aug 25;48(17):5570-9.
- Menicagli R, Samaritani S, Signore G, Vaglini F, Dalla Via L. In vitro cytotoxic activities of 2-alkyl-4, 6-diheteroalkyl-1, 3, 5-triazines: new molecules in anticancer research. Journal of medicinal chemistry. 2004 Sep 9;47(19):4649-52.
- 11. Henke BR, Consler TG, Go N, Hale RL, Hohman DR, Jones SA, Lu AT, Moore LB, Moore JT, Orband-Miller LA, Robinett RG. A new series of estrogen receptor modulators that display selectivity for estrogen receptor β . Journal of Medicinal Chemistry. 2002 Dec 5;45(25):5492-505.
- Jensen NP, Ager AL, Bliss RA, Canfield CJ, Kotecka BM, Rieckmann KH, Terpinski J, Jacobus DP. Phenoxypropoxybiguanides, prodrugs of DHFR– inhibiting diaminotriazine antimalarials. Journal of medicinal chemistry. 2001 Nov 8;44(23):3925-31.
- 13. Agarwal A, Srivastava K, Puri SK, Chauhan PM. Syntheses of 2, 4,

6-trisubstituted triazines as antimalarial agents. Bioorganic & medicinal chemistry letters. 2005 Feb 1;15(3):531-3.

- GH. DeAngelis 14. Kuo Α. Emanuel S, Wang A, Zhang Y, Connolly PJ, Chen X, Gruninger RH, Fuentes-Pesquera Rugg C. A. Middleton SA. Synthesis and identification of [1, 3, 5] triazinepyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors. Journal of medicinal chemistry. 2005 Jul 14;48(14):4535-46.
- Kumar Pandey VI, Tusi S, Tusi Z, Joshi M, Bajpai S. Synthesis and biological activity of substituted 2, 4, 6-s-triazines. Acta Pharmaceutica. 2004 Mar 1;54(1):1-2.
- 16. Arshad M, Khan TA, Khan MA. 1, 2, 4-triazine derivatives: Synthesis and biological applications. Int. J. Pharma Sci. Res. 2014;5(4):149-62.
- Arshad M, Khan TA, Khan MA. 1, 2, 4-triazine derivatives: Synthesis and biological applications. Int. J. Pharma Sci. Res. 2014;5(4):149-62.
- Ghaib A, Ménager S, Vérité P, Lafont O. Synthesis of variously 9, 9-dialkylated octahydropyrimido [3, 4-a]-s-triazines with potential antifungal activity. Il Farmaco. 2002 Feb 1;57(2):109-16.
- 19. Lübbers T, Angehrn P, Gmünder H, Herzig S, Kulhanek J. Design, synthesis, and structure– activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorganic & medicinal chemistry letters. 2000 Apr 1;10(8):821-6.
- 20. Srinivas K, Srinivas U, Bhanuprakash K, Harakishore K, Murthy US, Rao VJ. Synthesis and antibacterial activity of various substituted s-triazines. European journal of medicinal chemistry. 2006 Nov 1;41(11):1240-6.