

An Elsevier Indexed Journal

ISSN-2230-7346

Journal of Global Trends in Pharmaceutical Sciences

DESIGN AND CHARACTERIZATION OF ETHYL CELLULOSE-BASED COLON SPECIFIC MICROSPHERE CONTAINING NAPROXEN USING 3² FACTORIAL DESIGNS

Kothapally D.L.*, Sridhar Rao

Research Scholar, JJT University, Jhunjhunu, Rajasthan, India.

Department of Pharmaceutics, Chaitanya College of Pharmacy Education and Research, Hanamkonda, Telangana.

*Corresponding author E-mail:<u>danieljackmore@gmail.com</u>

ARTICLE INFO

ABSTRACT

Key Words

Eudragit, DSC, Microsphere

The objective of the present study was to formulate and optimize colon targeted Naproxenmicrospheres. To achieve these objective nine by emulsion solvent formulations of microspheres wereprepared evaporation method using Eudragit and Ethyl cellulose polymer. A 3^2 factorialdesign was employed in formulating the microspheres with concentration of Ethyl Cellulose (X_1) and PEG 600 (X_2) as independent variables. Percent drug release was considered asdependent variable. The effect of drug-polymer concentration, surfactant concentration, crosslinking agent and stirring speed were evaluated with respect to entrapment efficiency, particle size, surface characteristics, micromeritic properties, DSC study and in vitro drug release studies. The particle size and entrapment efficiency were found to bevaried by changing various formulation parameters like surfactant concentration and stirring speed etc. IR study confirmed the drug-polymer compatibility and scanning electronmicroscopy indicates that the microspheres have the rough and porous surface due toarising as a trace of solvent evaporation during the process.

INTRODUCTION:

Oral drug delivery still is the preferred route of administration for drug products. The evolution of oral drug delivery technology may be described by a threestage course to reach its current level. With every step forward in drug delivery technology, scientists strive to gain more control over the pharmacokinetics of the drug substance with the goal to increase the therapeutic benefit-risk ratio or to improve bioavailability.^{1,2} Delivery of drug substances to the ileocolonic region may be an essential element of successful drug treatment (improved efficacy or reduced systemic toxicity) in topical treatment of the colon. Release of mesalazine and corticosteroids in the ileocolonic region has proved to be a successful approach for the treatment of ulcerative colitis. Extension of this approach to other anti-inflammatory and immunosuppressive drug substances (e.g. 6-thioguanine, tacrolimus, ciclosporin A) is envisaged as a promise. Moreover, topical treatment of other colon pathologies also appears to be rational from a clinical pharmacological point of view, such as Crohn's disease (budesonide , infliximab), colon cancer (sulindac) 3,4 luminal amoebiasis (antibiotics), diarrhea (prebiotics) an inflammatory bowel disease (probiotics) . The common denominator of these therapies is that a high intraluminal concentration of drug substance in the ascending colon is related to a beneficial outcome of drug treatment. Another reason for investigating oral ileocolonic drug delivery may be found in support food science to weight management and the treatment of obesitas. Consumer research has highlighted the need to better control hunger when on a diet to enhance and sustain compliance in maximizing weight loss success. According to recent market research in the United States, the majority (53%) of respondent's claim to cheat on a diet because they are hungry. Microspheres have played a major role in the development of controlled and or sustained drug release delivery systems. Microspheres have been of particular interest from the pharmaceutical point of view providing the possibility to achieve sustained and controlled drug release.5 Table 1 I evel of selection of span60

There are several publications based on drug-containing microspheres using the Eudragit series of polymers as the encapsulating materials. The Eudragits are a family of polymers based on acrylic and methacrylic acids suitable for use in orally administered drug delivery systems. These polymers are available in various grades possessing a range of physicochemical properties^{8,9}.

The objective of the investigation is to design and develop colon targeted drug delivery system of tinidazole microspheres by using Eudragit L 100 and Ethyl cellulose as a pH sensitive polymer. by directly targeting the drug to colon.

Materials and methods

Materials: Naproxen was a gift sample from Dr.Reddy Lab Hyderabad,Eudragit L100 and Ethyl cellulose was procured from MSN Lab Hyderabad.,all the solvents are purchased from Evonik India Pvt. Ltd . Method:

Preliminary studies for surfactant level selection: Span 60 was used as surfactant in the microsphere formulation, at various concentration Span 60 was added and evaluated for EE% and DR%,from data obtained below it was confirmed that when the surfactant concentration is 1.8 ml EE% is high at various rpm the formulation of microsphere trial formulation was prepared

Batch code	Span 60(ml)	Drug(g.m)	Polymer Ratio Eudragit:EC	EE%	DR%
A1	1.8	0.9	1:2	56.01±0.03	87.11±0.43
A2	1.8	0.9	1:2	61.33±0.11	89.02 ±0.72
andA3	1.1	0.9	1:2	42.01±0.33	72.66±0.17
A4	0.4	0.9	1:2	40.31±0.22	69.23±0.66

Preliminary studies for RPM level selection

and evaluated for EE% and DR%, The trial results are given below in table noXXXX

Batch code	RPM	Drug(g.m)	Polymer Ratio Eudragit:EC	EE%	DR%
A5	2000	0.9	1:2	64.31±0.83	77.11±0.43
A6	2000	0.9	1:2	63.23±0.01	80.02 ±0.12
A7	1500	0.9	1:2	52.01±0.23	77.66±0.27
A8	1000	0.9	1:2	50.31±0.12	70.23±0.26

Table no: 2Level of selection of RPM

Preparation of Naproxen microspheres

Naproxen microspheres were prepared by emulsification solvent evaporation method. Accurately weighed EL 100 and EC in 1:2 ratios were dissolved in ethanol and acetone to form a homogenous polymer solution. Tinidazole was added into the polymer solution and mixed thoroughly. Plasticizer (dibutyl phthalate 50% w/v) was added to above solution. The above organic phase was slowly poured at 30 ° C into liquid paraffin (15 mL) containing span 60 of different concentrations with stirring speed at different rpm to form a smooth emulsion. Thereafter. it was allowed to attain room temperature and was continued until residual stirring acetone and ethanol evaporated and and smooth walled. rigid discrete microspheres were formed. The microspheres were collected by decantation and the product was washed with petroleum ether $(40^{\circ} - 60^{\circ}C)$, three times and dried at room temperature for 3 h. The microspheres were then stored in a desiccators over fused calcium chloride for further use. Nine batches were performed with optimization^{10,11}

Independent Variables	ndependent Variables Dependent Variables					
X ₁ =surfactant concentration	$Y_1 = \%$ of drug release					
$X_2 = RPM$ $Y_2 = Entrapment efficiency$						
Table no: 4 - 3² F	Table no: 4 -3 ² Factorial Design for Tinidazole microsphere					
Formulation code X_1 X_2						
F1	+1	-1				
F2	+1	0				
F3	+1	+1				
F4	0	-1				
Coded value	Actualvalue X1(%)	X ₂ (rpm)				
-1	0.4	1000				
0	1.1	1500				
+1	1.8	2000				
F5	0	0				
F6	0	+1				
F7	-1	-1				
F8	-1	0				
F9	-1	+1				

Table no: 3 Experimental Variables in 3² Factorial Design

 Table no: 5-Fomulation chart of Tinidazole Microsphere

Formulation cod	leDrug(gm)	Polymer	Surfactant	RPM
EL:EC	concentration	-		
F1	0.9	1:2	1.8	2000
F2	0.9	1:2	1.8	1500
F3	0.9	1:2	1.8	1000
F4	0.9	1:2	1.1	2000
F5	0.9	1:2	1.1	1500
F6	0.9	1:2	1.1	1000
F7	0.9	1:2	0.4	1000
F8	0.9	1:2	0.4	1500
F9	0.9	1:2	0.4	2000

Characterization of Tinidazole microspheres

Drug-polymer interaction (FTIR) study

FTIR spectroscopy was performed on Fourier transform infrared spectrophotometer (IR Affinity-1, Shimadzu, Japan).

Particle size: The particle size of the microbeads was evaluated using an optical microscope fitted with a calibrated eyepiece micrometer under a magnification of 40X. The particle diameters of about 50 microbeads were measured randomly and the average particle size was determined using the Edmondson's equation:

$$D_{\text{mean}} = \Sigma \frac{nd}{\Sigma_n}$$

Where, n - stands for the number of counted microbeads, and d - mean size range.

% Drug content: Accurately weighed 100 mg microbeads were taken in a mortar pestle, finely crushed and then small quantity of water is added. It was then kept overnight for complete solubilization of pectin and drug release from it. After suitable dilutions in methanol, absorbance was measured in uv-vis spectrophotometer and accordingly drug content is calculated. The study was repeated threetimes.^{12,13}

Entrapment efficiency: Microspheres containing equivalent to 10 mg of drug was allowed to equilibrate in 100 mL of phosphate buffer pH 7.4 for 24 h. The solution was filtered using Whatman filter paper (44). The resulting solution was analyzed using a UV spectrophotometric method at 318nmin the presence of a blank prepared from microspheres containing all materials except the drug.

%Drugentrapment

 $= \frac{\text{calculated drug concentration}}{\text{theoretical drug concentration}} \times 100$

Differential scanning colorimetry (DSC)

DSC studies were performed using a DSC METTLERSwitzerland with thermal analyzer. Accurately weighed samples (about 5 mg) were placed in a sealed aluminium pan, before heating under nitrogen flow (20 mL/min) at a scanning rate of 20 _C per min from 40 to 300 _C. An empty aluminium pan was used as reference. DSC thermograms of pure substances, their physical mixtures and drug-loaded micro particles were recorded. **Surface morphology (SEM)**

Scanning electron microscopy has been used to determine the surface morphology and texture. SEM studies were carried out by using JEOL Model JSM-6390LV scanning microscope.

Micromeritic properties of microspheres: The flow properties of microspheres were investigated by determining the angle of repose, bulk density, tapped density, Carr's and Hausner's ratio. The angle of repose was determined by the fixed-based funnel method. Bulk and tapped densities were measured in 10 mL of a graduated cylinder. The cylinder was tapped from a height of 2 inches until a constant volume was obtained. The volume occupied by the sample after tapping was recorded and bulk density, tapped density, Carr's index and Hausner's ratio was calculated.

In vitro drug release studies: In vitro release study of microspheres was performed in pH progression medium at 37° C $\pm 0.5^{\circ}$ C. The drug dissolution test of microspheres was performed by the paddle method (USP dissolution apparatus Type Limited, II. Electro lab India). Microspheres equivalent to 100 mg were weighed accurately and put in muslin cloth and tied this to paddle over the surface of 900 mL of dissolution medium. The content was rotated at 100 rpm. The pH of the dissolution medium was kept 1.2 for 2 h using 0.1 N HCl. After 2 h, the pH of the dissolution medium was adjusted to 7.4 with 0.1 N NaOH and maintainedup to 8 h. The samples were withdrawn from the

dissolution medium at various time intervals using a pipette. The rate of drug release was analyzed using UV spectrophotometer (JASCO, Ahmadabad, India).¹⁴

Kinetic treatment of dissolution data

There are number of kinetic models, which described the overall release of drug from the dosage forms. One of the approach to investigate the kinetics of drug release from controlled release formulation is by using model dependent methods. Model dependent methods are based on different mathematical functions, which describe the dissolution profile. Once a suitable function has been selected, the dissolution profiles are evaluated depending on the derived model parameters. Following models are evaluated.¹⁵

Zero order Kinetics

Drug dissolution from dosage forms that do not disaggregate and release the drug slowly can be represented by the equation:

$Q_0 - Q_t = K_0 t$

Rearrangement of equation (9) yields Where, Q_t is the amount of drug dissolved in time *t*, Q_0 is the initial amount of drug in the solution (most times, $Q_0=0$) and K_0 is the zero order release constant expressed in units of concentration/time. To study the release kinetics, data obtained from *in vitro* drug release studies were plotted as cumulative amount of drug released versus time

First order Kinetics

This model has also been used to describe absorption and/or elimination of some drugs, although it is difficult to conceptualize this mechanism on a theoretical basis. The release of the drug which followed first order kinetics can be expressed by the equation:

$\log C = \log C_0 - K_E t/2.303$

where C_0 is the initial concentration of

drug, K is the first order rate constant, and t is the time. The data obtained are plotted as log cumulative percentage of drug remaining vs. time which would yield a straight line with a slope of -K/2.303.

Higuchimodel

This model is based on the hypotheses that (i) initial drug concentration in the matrix is much higher than drug solubility; (ii) drug diffusion takes place only in one dimension (edge effect must be negligible); (iii) drug particles are much smaller than system thickness; (iv) matrix swelling and dissolution are negligible; (v) drug diffusivity is constant; and (vi) perfect sink conditions are always attained in the release environment.In a general way it is possible to simplify the Higuchi model as,

$f_t = Q = K_K \times t_{1/2}$

where, K_H is the Higuchi dissolution constant. The data obtained were plotted as cumulative percentage drug release versus square root of time

Hixson-Crowell model

Hixson and Crowell (1931) recognized that the particles regular area is proportional to the cube root of its volume. They derived the equation:

 W_0 — W_t =nt. Where, W_0 is the initial amount of drug in the pharmaceutical dosage form, W_t is the remaining amount of drug in the pharmaceutical dosage form at time t and n (kappa) is a constant incorporating the surface volume relation. The equation describes the release from systems where there is a change in surface area and diameter of particles or tablets. Tostudy the release kinetics, data obtained from *in vitro* drug release studies were plotted as cube root of drug percentage remaining in matrix *versus* time.

Statistical design

Design-Expert software (Design Expert trial version 8.0.7.1;State-Ease Inc., Minneapolis, MN, USA) was used. A twofactor three-level full factorial design was used for systemic study of combination of polymers. Polynomial models including interaction and quadratic terms were generated for the entire response variables using multiple linear regression analysis (MLRA) approach. The general form of the MLRA model is represented in the equation. Where Y is the dependent variable; b0 is the arithmetic average of all the quantitative outcomes of nine runs. b1, b2, b12 are the estimated coefficients computed from the observed experimental response values of Y and X1 and X2 are the coded levels of the independent variables. The interaction term (X1X2) shows how the response values change when two factors are simultaneously changed. Table summarizes 1 the translation of the coded levels to the experimental units used in the study and Table X summarizes the experiment runs used. In this study factorialdesign based on surface method the response was adopted to optimize effective factors for the release of the drugfrom the microspheres.Analysis of variance (ANOVA) and all statistical analysiswere also performed using the software. Calculation of theeffects was performed. The significant effects would constitute the model. The F-value was then calculated by comparing the treatment variance with the error variance. The multiplecorrelation coefficient was calculated which is a measure of the amount of variation about the mean, which is explained by the model. The main effects and interactions are plottedand interpreted. assumptions results All underlying theANOVA are checked. For statistical purposes, the assumptions made that residuals are normally distributed and independent with constant variance.¹⁶ Spectrometric estimation of Naproxen. The Lamda max of drug was obtained by scanning 20µg/ml solution concentration in the range of 200-400nm using UV-Visible spectrometer and it was found that 317.9nm for phosphate buffer pH 6.8 and pH 7.4

SOLVENT	SOLUBILITY
Water	Not soluble
Methanol	Soluble
PH -6.8 buffer	Partially Soluble
PH- 7.4 buffer	Soluble
PH- 5.8 buffer	Not soluble

Table-1 Solubility of Naproxen in various solvents

RESULTS & DISCUSSION

Preparation of standard calibration curve of Naproxen: Tinidazole (10 mg) was dissolved in 0.1 N HCl and volume was made up to 100 mL in 100 mL volumetric flask. This solution (100 mcg/mL) was further diluted with 0.1 N HCl to obtain solution of 5 to 40 mcg/mL. Absorbance of each solutionwas measured at 228 nm using Shimadzu UV-1601 UV/Vis double beamspectrophotometer and 0.1 N HCl as reference standard. The standard curvewas generated for the entire range from 5 to 40 mcg /mL. The results of standardcurve preparation are shown in the Table 6,7 and Figure 1&2

Drug –polymer compatibility results: The FTIR spectra of pure drug, Eudragit and tinidazolemicrospheres were shown in (Fig: 3). It shows that no incompatibility reactions took place between drug and excipients.

DSC Study: DSC thermograph of tinidazole, Eudragit and tinidazoleloaded Eudragit microspheres are shown in Fig 5 The pure drug tinidazole Fig. 5(a) gives rise to a sharp peakthat corresponds to melting point at 126 ⁰C, indicates itscrystalline nature. The pure polymer Eudragit L 100 and Eu ragit S 100 exhibits ^{0}C peak at 223 and 222 ^{0}C a respectively, referring to the relaxation that follows the glass transition .peak of drug did not appear in the thermogram of prepared microspheres, it may indicate the drug was uniformly dispersed at the molecular level in themicrospheres in Fig. 5

P =	Absor	bance		Mean
	II		III	absorbance
2	0.115	0.113	0.115	0.114
4	0.197	0.198	0.195	0.196
6	0.301	0.300	0.303	0.301
8	0.393	0.393	0.391	0.392
10	0.473	0.472	0.474	0.473
12	0.553	0.552	0.553	0.552

Table-2 Calibration data of Naproxen in pH 6.8 phosphate buffer at 235nm

Standard curve of Naproxen in pH 6.8 phosphate buffer at 235nm y = 0.0444x + 0.0277 $R^2 = 0.998$ 0.1 0 5 10 Con(µg/ml)

FTIR RESULTS for Naproxen

Spectra analysis of Naproxen

DSC RESULTS

Table 5.5: FTIR Spectra of Standard and Procured Naproxen					
Functional	Wave Number (cm-1)				
group	Standard Peak	Standard	Procured		
present	Region	drug	drug		
			(from		
			figure 13)		
Carboxyl	3500-2400	3175	3170.4		
group (-	1730-1700	1728	1727.91		
COOH)	1320-1210	1229	1229.4		
O-H stretch					
C=O stretch					
C-O stretch					
Aromatic ring					
C=C-C stretch	1615-1580	1604	1604.48		
Ethyl Aryl-O	1270-1230	1260	1264.11		
stretch	1150-1050	1092	1090.55		
Alkyl C-O					
stretch					

The in vitro release study was carried out by buffer change method to mimic the GIT environment. Drug release for the initial 2

Charaterisation of Microsphere of
different batches

Formulat	Entrapme	Avarage	Specifi
ion code	nt	particle	с
	efficiency	Mean	Surface
	(%)	Dameter	area(m
		(µm)	2/g
			×10-2)
F1	85.36±0.0	656.14±0	1.34
	3	.04	
F2	88.44±0.1	659.74±0	1.36
	3	.02	
F3	89.34±0.1	649.12±0	1.34
	3	.01	
F4	79.16±0.0	652.31±0	1.36

	Eactor 1	Eactor 2	Response 1	Response 2	Response 3
Run	A:Ethyl Cellulose	B:PEG 600	EE	Particle Size	DR%
	mg	mg	96	um	%
1	1.8	0.2	85.36	656.14	79
2	2	0.2	88.44	659.74	82
3	1.8	0.6	89.34	649.12	67
4	2	0.4	90.16	652.31	89
5	1.8	0.4	86.79	651.11	90
6	2.2	0.2	91.48	653.32	98
7	2.2	0.4	90.23	652.31	89
8	2	0.6	86.01	648.61	70
9	22	0.6	79.22	649.65	71

Micromeritic results

The value of angle of repose of formulation within therange of 17.43 ± 0.13 to 29.13 ± 0.22 indicating good flow properties for the microspheres. The bulk density Values ranged between 0.197\pm0.53 to 0.127\pm0.43 The tapped density values ranged between 0.219±0.03 and 0.299±0.33 (gm/cm³). The Carr's index values ranged between 28.63±0.03 and 28.63±0.03 which can describe by Table 8

In vitro drug release profile

h i.e. in 0.1 N HCL, The drug release is found 91.84% at the end of 8 min pH 7.4 phosphate buffer, shown in Fig.6

	1	.32	
F5	86.79±0.0	651.11±0	1.38
	3	.31	
F6	88.13±0.1	640.11±0	1.38
	3	.33	
F7	42.65±0.0	652.31±0	1.32
	7	.28	
F8	52.65±0.0	648.61±0	1.31
	7	.18	
F9	49.65±0.0	649.65±0	1.32
	8	.07	

OPTIMIZATION RESULTS FOR NAPROXEN MICROSPHERE

ANOVA for Quadratic model

Response 1: EE

Source	Sum of Squares	d	f Mean Square	F-value	p-value	
Model	99.37	5	19.87	5.37	0.0986	significant
A-Ethyl Cellulose	0.0523	1	0.0523	0.0141	0.9129	
B-PEG 600	19.12	1	19.12	5.16	0.1077	
AB	65.93	1	65.93	17.81	0.0243	
A ²	2.57	1	2.57	0.6939	0.4660	
B ²	11.70	1	11.70	3.16	0.1736	

ANOVA for Quadratic model

Response 2: Particle Size

ANOVA for Quadratic model

Response 3	: DR%					
Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	842.92	5	168.58	6.92	0.0711	significant
A-Ethyl Cellulose	80.67	1	80.67	3.31	0.1664	
B-PEG 600	433.50	1	433.50	17.79	0.0243	
AB	56.25	1	56.25	2.31	0.2259	
A ²	8.00	1	8.00	0.3284	0.6067	
B ²	264.50	1	264.50	10.86	0.0459	

Batch	Angle of Bulk		Tapped	Carr;s	Hausner
	Repose	density(gm/cm ³)	density(gm/cm ³)	Index	ratio
F1	30.13±0.03	0.177±0.13	0.289±0.13	33.63±0.33	1.21
F2	31.23±0.13	0.189±0.03	0.299±0.33	41.63±0.33	1.03
F3	29.17±0.33	0.187±0.03	0.219±0.03	46.63±0.33	1.33
F4	29.44±0.03	0.147±0.13	0.289±0.03	33.63±0.33	1.25
F5	38.33±0.03	0.177±0.03	0.289±0.03	33.63±0.23	1.26
F6	24.33±0.13	0.185 ± 0.02	0.289±0.03	33.63±0.13	1.22
F7	27.33±0.11	0.167±0.03	0.269±0.03	32.63±0.08	1.13
F8	21.33±0.13	0.188±0.23	0.279 ± 0.03	33.63±0.06	2.03
F9	29.66±0.03	0.186±0.03	0.286±0.03	28.63±0.04	1.06

Micromeritic Properties of different batches of Naproxen Microsphere

In-Vitro Release Profile of Naproxen Microsphere (F1-F3)

Time(h)	In-Vitro Release Profile(%)								
	F1	F2	F3	F4	F5	F6	F7	F8	F9
0.5	10.12	23.33	15.77	12.33	13.33	8.98	23.33	20.12	15.77
1	23.43	43.12	23.11	21.33	33.12	25.12	43.12	33.43	23.11
2	45.31	52.33	34.99	34.77	56.33	45.77	52.33	55.31	34.99
3	68.90	69.95	41.66	45.87	79.95	69.13	69.95	78.90	41.66
6	80.66	78.10	45.99	57.32	88.10	78.13	78.10	86.66	45.99
8	98.11	89.13	53.86	68.98	93.13	86.13	89.13	98.41	53.86
10	-	98.77	65.66	78.42	98.77	95.44	98.77	-	65.66
12	-	-	69.33	86.77		99.13		-	69.33

In-Vitro Release Profile of Naproxen Microsphere (F4-F6)

In-Vitro Release Profile of Naproxen Microsphere (F7-F9)

RELEASE KINETICS OF NAPROXEN MICROSPHERE

TIME	%CDR	SQARE T	LOG T	LOG%CDR	ARA	LOG%ARA
0	0	0	0	0	0	0
1	15.96	1	0	1.203033	84.04	1.924486
2	25.17	1.414214	0.30103	1.400883	74.84	1.874134
3	34.91	1.732051	0.477121	1.54295	65.09	1.813514
4	43.75	2	0.60206	1.640978	56.25	1.750123
5	55.48	2.236068	0.69897	1.744136	44.52	1.648555
6	69.41	2.44949	0.778151	1.841422	30.59	1.485579
7	80.18	2.645751	0.845098	1.904066	19.82	1.297104
8	93.15	2.828427	0.90309	1.969183	6.85	0.835691

Release kinetics Results

Release kinetics was performed for the optimized batch. In vitro drug release of check point batch was best explained by zero order as the plot showed highest linearity. The pharmaceutical dosage forms following this profile release the same amount of drug by unit of time and it

CONCLUSION

Eudragit microspheres of tinidazole were successfullyprepared by emulsion solvent evaporation technique. Theresults shown in Table indicates that optimum concentrationof surfactant (1. 8 ml) and stirring speed (2000 rpm)showed higher percent of entrapment efficiency while changein stirring speed up to optimum range and change thesurfactant is the ideal method of drug release in order to achieve a pharmacological prolonged action.Further, the mechanism of drug release fitted well with Hixon-crowell model, indicating sustain release mechanism. The plots and results of this study are shown in Figure

concentration up to optimum range change thepercent entrapment efficiency (Table 4).

RFERENCES

1. Philip AK, Philip B. Colon targeted drug delivery system: a review on primary and novel approaches. Oman Med J.2010; 25(2):79-87.

- ChourasiaMKandJainSK, "Pharmac euticalapproachestocolontargeteddr ugdelivery systems." J. Pharm. Sci. 2003, 33-66.
- 3. Chourasia MK and Jain SK, "Potential of guar gum microspheres for target specific drug release to colon." *J. Drug Targeting.* **2004**, 12,435-442.
- Vinay kumar KV, Siva kumar T and Tamizh mani T, "Colon targeting drug delivery system: A review on recent approaches" *Int. J. Pharm. Biomed. Sci.* 2011, 2(1),11-19.
- 5. Choudhury P K, Panigrahi T K, Murthy P N, Tripathy N K, Behera S and Panigrahi R, "Novel Approaches and Developments in Colon Specific Drug Delivery Systems- A Review." Webmed central com. **2012**,1-20.
- 6. Shendge RS and Sayyad FJ, "Multiparticulate colon targeted drug delivery systems: Prospects and perspectives."*Inventi impact NDDS*, **2012**, Issue 1,12-16.
- 7. Asghar LFA and Chandran S, "Multiparticulate Formulation Approach to Colon Specific Drug Delivery: Current Perspectives." J. Pharm. Pharmaceut. Sci. 2006, 9 (3),327-338.
- Cook W, Quinn ME, Sheskey PJ, Pectin. In: Raymond RC, Sheskey PJ and Quinn ME, Handbook of pharmaceutical excipients, 6th Edn, Pharmaceutical press and American pharmaceutical association, London, 2009, pp478-479
- 9. Chang RK, Peng Y, Trivedi N, Polymethacrylates. In: Raymond RC, Sheskey PJ and Quinn ME, Handbook of pharmaceutical excipients, 6th Edn, Pharmaceutical press and American pharmaceutical association, London, 2009, pp525-533.

- 10. Pellett MA, Calcium chloride. In: Raymond RC, Sheskey PJ and Quinn ME, Handbook of pharmaceutical excipients, 6th Edn, Pharmaceutical press and American pharmaceutical association, London, 2009, pp89-90.
- 11. Yin Hsu F, Ding-Syuan Yu and Huang CC, "Development of pHsensitive pectinate/alginate microspheres for colon drug delivery." *J. Mater. Sci: Mater. Med.***2012**.
- 12. Mennini N, Furlanetto S, Cirri M and Mura P, "Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxibhydroxypropyl-b-cyclodextrin-PVP complex." *Eur. J. Pharm. Biopharm.* 2012, 80,67–75.
- Das S, Chaudhury A and Ka-Yun N, "Preparation and evaluation of zinc-pectin- chitosan composite particles for drug delivery to the colon: Role of chitosan in modifying in vitro and in vivo drug release." *Int. J. Pharm.* 2011, 406,11–20.
- 14. Simi SP, Saraswathi R, Sankar C, Krisnan PN, Dilip C and Ameena K, "Formulation and evaluation of albendazole microcapsules for colon delivery using chitosan." *Asian Pacific J. Tropical Medicine*. 2010,374-378.
- 15. Lucinda-Silva RM, Nunes Salgado Evangelista HR and RC. "Alginate-chitosan systems: Invitro controlled release of triamcinolone and in-vivo gastrointestinal transit." *Carbo*. *Poly.* **2010**, 81,260–268.
- 16. Oliveira GF, Carvalhob LQ and Evangelista RC, "Chitosan–pectin multiparticulate systems associated with enteric polymers for colonic drug delivery." *Carbo. Poly.* **2010**, 82, 1004–1009.