

An Elsevier Indexed Journal

ISSN-2230-7346



Journal of Global Trends in Pharmaceutical Sciences

#### OPTIMIZED AND VALIDATEDSTABILITY INDICATING RP-HPLC METHOD FOR THE DETERMINATION OF PRISTINAMYCIN IN BULK AND PHARMACEUTICAL FORMULATIONS

# Jonnala P. Srinivasa Reddy<sup>1\*</sup>, Dr. T. Vijaya Bhaskara Reddy<sup>1</sup>, N. Sowjanya Reddy<sup>1</sup>and Dr. T. Parthasarathy<sup>\*</sup>

Department of Chemistry, Dravidian University, Srinivasavanam, Kuppam - Andhra Pradesh, India

\*Corresponding author E-mail: srinivasjp777@yahoo.com

#### ARTICLE INFO

# Key Words

Pristinamycin, RP-HPLC, Repeatability Accuracy, Precision and Reproducibility and Linearity.



**ABSTRACT** A reverse phase high performance liquid chromatographic method (RP-HPLC) was developed for the determination of the amount of Pristinamycin present in bulk and pharmaceutical formulations. Waters-Alliance HighPerformance Liquid Chromatographic system equipped with Auto Sampler, PDA detectorand Symmetry C18 (250 x 4.6mm, 5µ, Make: ACE-5) column were used for the method development. Separation of the components were carried out by using 0.2% ortho phosphoric acid and acetonitrile in the ratio 63:37 v/vas mobile phase at a flow rate of 1.5 mL per minute and the detection of the components was carried out at a wavelength of 206nm. System suitability parameters such as retention time, tailing factor and USP theoretical plate countof the developed method were found to be 3.31minute, 1.02 and 3750respectively. The linearity between area of the peak and concentration of the drug was found to be 25-150µg/mL.The %mean recovery of Pristinamycinwere found to be 99.08(50%),99.37(100%) and 99.85(150%) respectively. From the study of forced degradation the percent of recovery of the drug was found to be 79.98, 84.62, 81.00, 88.09 and 85.57 under different degradation conditions such as acid (0.5N HCl), alkali (0.5N NaOH), peroxide (3%H<sub>2</sub>O<sub>2</sub>) and UV light.The developed method found was to be simple. fast. repeatable, reproducible, robust, rugged and economichence it can be used as a new analytical method for the analysis of pharmaceutical formulations in any pharmaceutical industries.

#### **INTRODUCTION**

Pristinamycinalso spelled pristinamycine, is an antibiotic used primarily in the treatment of staphylococcal infections, and to a lesser extent streptococcal infections. It is a streptogramin group antibiotic, similar to virginiamycin, derived from the bacterium Streptomyces pristinaespiralis. Pristinamycin is a mixture of two components that have a synergistic antibacterial action. Pristinamycin IA is a macrolide, and results in pristinamycin's having a similar spectrum of action to erythromycin. Pristinamycin

IIA (streptogramin A) is a depsipeptide.PI coproduced and PII are by S. pristinaespiralis in a ratio of 30:70. Each compound binds to the bacterial 50 S ribosomal subunit and inhibits the elongation process of the protein synthesis, thereby exhibiting only a moderate bacteriostatic activity. However, the combination of both substances acts synergistically and leads to a potent bactericidal activity that can reach up to 100 times that of the separate components.Despite the macrolide component, it effective against is erythromycin-resistant staphylococci and strepcococci. It is active against methicillinresistant Staphylococcus aureus (MRSA). Its usefulness for severe infections, however, may be limited by the lack of an intravenous formulation owing to its poor solubility.Pristinamycin is chemically N-(3-benzyl-12-ethyl-4,16known as dimethyl-2,5,11,14,18,21,24-heptaoxo-19phenyl-17-oxa-1,4,10,13,20pentazatricyclo[20.4.0.06,10]hexacosan-15-yl)-3-hydroxypyridine-2carboxamide;(12Z,17Z,19Z)-21-hydroxy-11,19-dimethyl-10-propan-2-yl-9,26dioxa-3,15,28triazatricyclo[23.2.1.03,7]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone,  $C_{71}H_{84}N_{10}O_{17}$ , 1349.506g/mol. molecular weight MallikharjunaraoNagasarapuet.al<sup>1</sup>develope d developed a stability indicating RP-**HPLC** the method for assay of Pristinamycin in bulk and formulation.John NG<sup>2</sup>developed a Successful oral pristinamycin therapy for osteoarticular infections due to methicillinresistant Staphylococcus aureus (MRSA) and other Staphylococcus spp.V.Loncle  $et.al^3$ developed Analysis of Pristinamycin-Resistant Staphylococcus epidernidis Isolates Responsible for an Outbreak in a Parisian Hospital.Suresh et.al4 V developed Kannan spectrophotometric method for estimation

of Pristinamycin bulk and pharmaceutical dosage form.S.Drogue et.al<sup>5</sup> developed Separation of pristinamycins by highspeed counter-current chromatography I. Selection of solvent system and preliminary preparative studies.AndreM.A Van Wageningen et.at<sup>6</sup> developed Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. The aim of the present study was to develop and validate rapid, simple, and selective liquid chromatography method for Pristinamycin quality control in tablets.



Figure1: Molecular structure of Pristinamycin Materials and Methods

Equipment: Waters-Alliance HPLC system equipped with auto sampler, binary gradient pump, and PDA detector was used for the separation. An analytical column; Symmetry C18 (250mm x 4.6mm, 5um, Make: ACE-5) was used in the analysis. Chromatographic software Empower -3was used for data collection and processing. Double beam, 1cm length quartz coated optics and wavelength range190-400nm **UV-Visible** Spectrophotometer is used for measuring absorption spectrum.

*Materials:* Pristinamycin pure drug was gifted Sample. The commercially available

formulations of Pristinamycin were purchased from the local market. The HPLC grade water was prepared by double glass distillation and filtration through 0.45 mm filters. Acetonitrile of HPLC grade was obtained from E.Merck. (India) Ltd., Mumbai. Ortho phosphoric acid analytical grade are purchased from Qualigens Fine Chemicals Ltd.. Mumbai. The mobile phase was prepared by mixingthoroughly, 0.2 % Acetonitrile and ortho phosphoric acid in 37:63 (v/v) mobile phase was prepared and degassed for 10 minutes by sonication. Water: ACN (60:40 v/v) was used as diluent. The pH of the resulting solution was adjusted and filtered through 0.45µm membrane filter. Preparation of standards: Stock solution (1 mg/mL )of the Pristinamycin was prepared by dissolving accurately weighed100mg of Pristinamycin standard in 100mL of diluent in avolumetric flask, sonicated and made up to the mark. Further working standard (100µg/mL) was prepared by transferring 10mL of the stock solution into 100mL volumetric flask and diluted up to the mark with diluent, sonicated and filter through 0.45µm filter. A series dilute solutionranging from 25.0-150.0 µg/mLwere prepared by taking different aliquots (0.25 - 1.50 mL) of the stock solution and diluted in similar manner. Preparation of test solution: Twenty tablets of Pristinamycin were accurately weighed and finely powderedin a mortar. An amount of tablet mass equivalent to 25mg was transferred to a 250mL volumetric flask and dissolved in 100 mL of diluentand then the flask was placed in sonicator for 30 min. The resulting solution was diluted to volume with diluent and then filtered through 0.45µm membrane. Further sample (100µg/mL) was prepared by transferring 10mL of the stock solution into 10mL volumetric flask and diluted up to the mark with diluent, sonicated and filter through 0.45µm filter.

Developing optimum chromatographic Absorption spectrum conditions: of Pristinamycin working standard was scanned from 200nm to 400nm range of wavelength with 2nm variation. From the absorbance spectrum it was found that 206 nm was the wavelength of maximum absorbance. The chromatographic separation was carried out under the isocratic conditions. The mobile phase was allowed to flow through the column at a flow rate of 1.5mL/min for 2 minutes to equilibrate the column at ambient temperature. Chromatographic separation was achieved by injecting a volume of 10 µl of standard into Symmetry C18 (250mm x 4.6mm, 5µm, Make: ACE-5) column, the mobile phase of composition orthophosphoric 0.2% acid and Acetonitrile in the ratio 63:37 v/v was allowed to flow through the column. Detection of the component was carried out at a wavelength of 206 nm. After some different trails withvarying parameters chromatographic such as column, flow rate and injection volume were tested for obtaining best system suitability parameters such as peak shape, minimum run time and less tailing factor. The set of chromatographic conditions and the suitability parameters in four different trails were presented in Table-I and Table-II respectively.

# **RESULTS AND DISCUSSION**

System suitability parameters: To evaluate system suitability parameters, a volume of 10 µl of Pristinamycinworking standard solution was injected into the analytical column, mobile phase was allowed to flow at a rate 1.5mL/min. for 2.0minutes and the components were detected at 206nm using PDA detector. System suitability parameters such as retention time, tailing factor and USP theoretical plate count of the developed method were found to be 3.3minute, 1.02 and 3750 respectively.

| Chromatographic conditions in different trails |                         |           |            |        |          |  |  |  |
|------------------------------------------------|-------------------------|-----------|------------|--------|----------|--|--|--|
| Trail                                          | Column                  | Flow Rate | Wavelength | Column | Run Time |  |  |  |
| Number                                         |                         | mL/min    | nm         | Temp⁰C | min      |  |  |  |
| 1                                              | ACE-5, C18 -HL          | 10        | 206        | 40     | 10       |  |  |  |
|                                                | (250 mmx 4.6 mmx 5µm)   |           |            |        |          |  |  |  |
| 2                                              | ACE-5, C18 -HL          | 12        | 206        | 35     | 15       |  |  |  |
|                                                | (250 mm x 4.6 mm x 5µm) |           |            |        |          |  |  |  |
| 3                                              | ACE-5, C18 -HL          | 15        | 206        | 45     | 12       |  |  |  |
|                                                | (250 mm x 4.6 mm x 5µm) |           |            |        |          |  |  |  |
| 4                                              | ACE-5, C18 -HL          | 15        | 206        | 40     | 10       |  |  |  |
|                                                | (250 mm x 4.6 mm x 5µm) |           |            |        |          |  |  |  |

# Table-I: Optimization of the proposed HPLC method

Optimized experimental conditions are achieved in Trail-4

# Table-II: Chromatographic parameters obtained in various trails

| Trail  | Retention | Peak    | Height | Plate | Tailing | Remarks                                                                                                                                              |
|--------|-----------|---------|--------|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Time min  | area    |        | count | factor  |                                                                                                                                                      |
| 1      | 2.82      | 195810  | 66233  | 2747  | 1.64    | Peak appears to be sharp having high<br>tailing factor and an additional<br>unknown peak was appeared                                                |
| 2      | 3.00      | 3137446 | 18025  | 11509 | 1.41    | Peak shape was broad and diffused                                                                                                                    |
| 3      | 3.50      | 2742864 | 43261  | 13598 | 1.34    | Peak shape was not symmetric                                                                                                                         |
| 4      | 3.31      | 2357904 | 43914  | 3750  | 1.02    | Peak was symmetric having high area,<br>height, plate count, valid tailing<br>factorand comparable retention time<br>relative to other chromatograms |

#### Table-III: Intra –Day and Inter-Day Precision of the proposed method

| Injection          | Area               | Area                |
|--------------------|--------------------|---------------------|
|                    | Intraday precision | Inter day precision |
| Injection-1        | 2374647            | 2362254             |
| Injection-2        | 2389435            | 2377449             |
| Injection-3        | 2378819            | 2381227             |
| Injection-4        | 2465466            | 2370243             |
| Injection-5        | 2368944            | 2343256             |
| Injection-6        | 2389054            | 2350655             |
| Average            | 2394394            | 2364181             |
| Standard Deviation | 35733.9            | 15019.2             |
| %RSD               | 1.49               | 0.64                |

| Level No | Concentrationµg/mL  | Area    |  |
|----------|---------------------|---------|--|
| 1        | 25                  | 589411  |  |
| 2        | 50                  | 1170650 |  |
| 3        | 75                  | 1756406 |  |
| 4        | 100                 | 2357904 |  |
| 5        | 125                 | 2920982 |  |
| 6        | 150                 | 3553921 |  |
|          | Slope               | 23629   |  |
| Corre    | elation Coefficient | 0.9998  |  |

# Table-IV: Linearity of the peak area against amount of the drug

### Table -V(i): Accuracy of the proposed method

| %Concentration | Amount | Amount | % Recovery | Mean     |
|----------------|--------|--------|------------|----------|
|                | Added  | Found  |            | Recovery |
| 50%            | 50     | 49.63  | 99.26%     |          |
| 50%            | 50     | 49.78  | 99.55%     | 99.08%   |
| 50%            | 50     | 49.21  | 98.42%     |          |

#### Table -V(ii): Accuracy of the proposed method

| %Concentration | Amount | Amount | % Recovery | Mean     |
|----------------|--------|--------|------------|----------|
|                | Added  | Found  | -          | Recovery |
| 100%           | 100    | 99.56  | 99.56%     |          |
| 100%           | 100    | 99.37  | 99.37%     | 99.37%   |
| 100%           | 100    | 99.19  | 98.19%     |          |

# Table -V(iii): Accuracy of the proposed method

| %Concentration | Amount | Amount | % Recovery | Mean     |
|----------------|--------|--------|------------|----------|
|                | Added  | Found  |            | Recovery |
| 150%           | 150    | 149.99 | 99.99%     |          |
| 150%           | 150    | 149.76 | 99.84%     | 99.85%   |
| 150%           | 150    | 149.57 | 99.71      |          |

# Table- VI Study of Robustness of the proposed HPLC method

|       |                        | Retention | Plate | Tailing |
|-------|------------------------|-----------|-------|---------|
| S.No. | Parameter              | time      | count | factor  |
|       | Mobile phase 1.3mL/min | 2.81      | 3308  | 1.14    |
| 1     | Mobile phase 1.5mL/min | 3.40      | 4134  | 1.17    |
|       | Mobile phase 1.7mL/min | 4.19      | 3676  | 1.29    |
|       | Column Temp 38°C       | 3.37      | 3454  | 1.22    |
| 2     | Column Temp 40°C       | 3.40      | 4156  | 1.17    |
|       | Column Temp 42°C       | 3.38      | 3470  | 1.20    |
|       | wavelength 204nm       | 3.25      | 3547  | 1.21    |
| 3     | wavelength 206nm       | 3.31      | 3750  | 1.05    |
|       | wavelength 208nm       | 3.30      | 3652  | 1.15    |

| Degradation | %Assay | %Degradation | Purity | Purity    |
|-------------|--------|--------------|--------|-----------|
| Parameter   |        | -            | Angle  | Threshold |
| Acid        | 79.98  | 19.68        | 0.320  | 0.605     |
| Base        | 84.62  | 15.04        | 0.244  | 0.902     |
| Peroxide    | 88.09  | 11.57        | 0.109  | 0.655     |
| UV          | 85.57  | 14.09        | 0.178  | 0.506     |

| Table | -VII: | Study | of | degradat | ion | of | the | drug |
|-------|-------|-------|----|----------|-----|----|-----|------|
|       |       | •     |    | 0        |     |    |     |      |

#### Table -VIII: Assay data of Pristinamycin Tablets



Figure 4: A typical chromatogram of Pristinamycinsample



Figure 5: Linearity plot of peak area against to amount of Pristinamycin

Typical chromatograms for standard and test were shown in Figure2 and Figure3 respectively.

Intraday and inter day precision: Intraday precision of a method was the study of repeatability of the results. The repeatability was determined by injecting working standard (100µg/mL) solution of Pristinamycinfive times, chromatograms were obtained, and the %RSD of the area of fivereplicates was calculated and found to be 1.49%. The intermediate precision of the method was the study of reproducibility of the results in different days and was determined on five replicates from same lot by spiking. The %RSD of the area of five chromatograms was evaluated and found to be 0.64%. The results thus obtained were shown in Table-III and present within the acceptance criterion of NMT 2% RSD.

*Linearity:* To determine the linearity of the proposed method, a series of six different concentrated solutions of the standard Pristinamycinwere prepared and about 10µL of each solution was injected in duplicate into the HPLC system, chromatograms were recorded under the optimum chromatographic conditions. A plot between mean peak area and concentration was found to be linear in the range of concentration 25-150.0% and it was presented in Figure4. Slopeand

correlation coefficient were calculated by least square regression method and were presented in Table-IV.

Accuracy: Accuracy of the proposed method was determined by analyzing Pristinamycin sample spiked at three different concentration levels in triplicate. To find out the accuracy a known amount of standard drug was added to the fixed amount of pre-analyzed sample solution at three different concentration levels in triplicate. Percent recovery of the drug was calculated by comparing the area before and after the addition of the standard drug. The mean recovery of the drug was found to be 99.4% andshown in Table -V.

*Robustness:* The study of robustness was performed by slight modification in chromatographic conditions such as flow rate, wavelength and column temperature. The working standard solution of Pristinamycinwas analyzed under these new set of experimental conditions. Only one parameter was changed while the others were kept unaltered. The system suitability parameters were evaluated as per the test method in all the cases and found to be within limits shown in Table-VI.

*Forced Degradation Studies:* The percent of drug that was degraded in the presence

of different stressed conditions like acid, photolytic base, peroxide, and UV lightwere studied. The drug standard was exposed to 0.5NHCl solution, 0.5N NaOH and 3% peroxide solutions for 24 hours at UV light. To study the percent of degradation in the presence of lightthe standard was exposed to UV light for about 24 hours. In each case a working standard  $(100 \mu g/mL)$ solution was prepared, injected into the system and the chromatograms were recorded. The amount of drug degraded was calculated by comparing the area of the standard with that of the area of the degraded sample. The results are presented in Table-VII.

Assay: The Developed method was functionalized for the tablet of Pristinamycin and the mean % assay was found to be 100%. The results of % assay were shown in Table-VIII.

# **CONCLUSION:**

The system suitability parameters such as tailing factor and number of theoretical plates are found to be within the limits and the retention time of the component was found to be 3.31min. The intra-day precision and inter-day precision of a method was expressed in terms of %RSD found to be less than 2.0. The percentage recovery (accuracy) of the drug at three different concentration levels and the mean percent of recovery were found to be within the specified limits. The proposed method was linear in the range of concentration 25-150% with good correlation coefficient. Degradation of the drug under different stressed conditions was found to be negligible. Hence the proposed method was found to be simple, fast, precise, accurate, rugged, robust and economic; therefore, the method can be used for routine analysis in quality control.

#### **REFERENCES:**

- 1. Nagasarapu mallikarjunarao, The Research gate, Scipham, 2016, 84, 279-287.
- 2. John NG, 2005, Journal of Antimicrobial chemotherapy, Volume 55, issue **6**, 1008–1012.
- 3. V. Loncle, Antimicrobial agents and chemotherapy, 1993, volume37(10), 2159-2165.
- 4. Suresh Kannan V, *World journal of Pharmaceutical research*, 2016, volume 6(**2**), 1027–1036.
- 5. S.Drogue, Journal of Chromatography A, 1992, Volume 593(**1-2**), 363–371.
- Andre M.A Van Wageningen ,Chemistry & Biology, 1998, Volume5(3), 155–162