PREPARATION AND EVALUATION OF ZALEPLON FAST DISSOLVING FILMS USING DIFFERENT FILM FORMING POLYMERS

Manal K. Darwish*
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy; Al-Azhar University, Cairo, Egypt.

ABSTRACT
Orally fast dissolving films became a novel approach to oral drug delivery system as they provide convenience and ease of use over other dosage forms. The aim of this study was to formulate fast dissolving films of zaleplon (ZAL), a drug indicated for short term management of insomnia. Zaleplon solubility was increased by complexation with β-cyclodextrin. The inclusion complex was proven by differential scanning calorimetry (DSC) and fourier transformation-infrared spectroscopy (FTIR). Different film forming polymers used were instant pure-cote, HPMC E15, lycoat NG73 and kolloidc IR with propylene glycol as a plasticizer. The prepared films were evaluated for film thickness, folding endurance, drug content, disintegration time and in vitro dissolution. The In vitro dissolution studies were carried out in distilled water and formulation containing kolloidc IR showed a complete drug release in the first 10 minutes and an In vitro dissolution time of 32.9 seconds. Zaleplon, has been reported to increase melatonin secretion in healthy human beings suggesting an influence of zaleplon on chronobiology. Zaleplon fast dissolving films were found to increase the melatonin level in human serum when compared with market tablets. The Area Under the Curve for mean melatonin concentration in both zaleplon films and market tablets during the first eight hours was found to be 410.93 and 217.32 respectively.

Keywords: Zaleplon, fast dissolving films, β-cyclodextrin, melatonin, ELISA.

INTRODUCTION
Zaleplon is a pyrazolopyrimidine sedative-hypnotic drug indicated for the short term management of insomnia (1). Zaleplon has sustained hypnotic efficacy without the occurrence of rebound insomnia or withdrawal symptoms on disrupt discontinuation (2, 3). Zaleplon is a lipophilic compound with poor aqueous solubility. It’s extensively metabolized into pharmacologically inactive metabolite (5), that’s why it has limited oral bioavailability. An enhancement in the solubility and the dissolution rate of that drug can improve its oral bioavailability which further improves the therapeutic efficacy and patient compliance (6). Various formulation techniques can be applied to overcome the low aqueous solubility of drugs without affecting their optimized pharmacological action. Fast dissolving films dissolve in the salivary fluids of the oral cavity within a minute, releasing the active drug. This is due to the large surface area of the film that wets quickly upon contact with saliva (7). A variety of polymers are available for preparation of fast dissolving oral films. The use of film forming polymers in oral films has attracted considerable attention in medical applications. The selection of polymer, is one of the most important and critical parameter for the successful development of the film formulation.

The polymers can be used alone or in combination to obtain the desired film properties (8). Lycoat NG 73 is an excellent film forming polymer from pea starch prepared by chemical and physical treatments. Lycoat is a novel granular hydroxypropyl starch polymer that has been designed especially for orodispersible films (9). Hydroxypropyl Methyl Cellulose (HPMC E15) is known for its good film forming properties and has excellent acceptability. HPMC polymer has a high glass transition temperature and is classified according to its viscosity which affects the solubility-temperature relationship (10). Kolloidc IR, a polyvinyl alcohol – polyethylene glycol graft copolymer is a new pharmaceutical excipient that was specially developed as a coating polymer for instant release tablets. The molecule is hydrophilic and thus readily soluble in water. (11). Instant pure-cote 793 is the trademark for a new, modified pre gelatinized starch uniquely designed for film-forming applications and aqueous film coating. It is a free-flowing, granular powder with excellent dispersibility characteristics. In the present study we investigated the effect of different film forming polymers on zaleplon release from different films. Melatonin has been used as a hypnotic, at the same time; melatonin is the main hormone secreted by the pineal gland and is involved in the light–dark/wake–sleep cycle regulation (12). Zaleplon has been reported to increase nocturnal melatonin secretion in rabbits (13) as well as in healthy human beings (14) and the elevation of plasma levels of melatonin may suggest an influence of zaleplon on chronobiology.

Address for correspondence
Manal K. Darwish*
Department of Pharmaceutics and Industrial Pharmacy; Faculty of Pharmacy; Al-Azhar University, Cairo, Egypt
Thus, this study also investigated the effect of zaleplon fast dissolving films on melatonin secretion in human volunteers.

MATERIALS AND METHODS

Materials

Zaleplon (ZAL) was obtained from October Pharma S.A.E., Egypt. Lycoat NG 73 was kindly provided from Roquette, France. Hydroxypropylmethyl cellulose (HPMC E15), propylene glycol and magnesium stearate from Egyptian International Pharmaceutical Co. EIPICO. Kollidicat IR was kindly provided from BASF, the chemical company, Germany. Beta-cyclodextrin (βCD) was purchased from Acros Organic, USA. Instantpure-cote 793 from Grain Processing Corporation, USA.

Preparation of zaleplon- Beta-cyclodextrin inclusion complex

The inclusion complex formation of zaleplon with βCD has already been reported, resulting in the significant improvement of its aqueous solubility (15). For co-grinding formulations, zaleplon with beta-cyclodextrin were mixed in three geometric ratios (1:1, 1:2 and 1:3) and triturated in glass mortar pestle for 20 minutes and passed through 80 mesh screen.

Characterization of zaleplon complex

Differential scanning calorimetry (DSC)

Thermal behavior of zaleplon, beta-cyclodextrin and inclusion complex were examined using thermal analyzer (Differential scanning calorimeter, model Mettler DSC60, Switzerland).The sample size was 5 mg and the temperature range was between 30 and 300°C. Nitrogen was used as carrier gas and DSC analysis was performed at heating rate of 10°C/min.

Fourier transfer Infrared spectroscopy (FTIR)

Infrared spectra of plain zaleplon, beta-cyclodextrin and inclusion complex were recorded by KBr method using pyeUnicam SP1000 IR Spectrophotometer, type pw 3710, Holland. Scanning was done from 750 -4000 cm⁻¹.

In vitro dissolution studies of zaleplon- beta-cyclodextrin complex

Dissolution of zaleplon and its inclusion complexes equivalent to 10 mg of zaleplon in three ratios (1:1, 1:2 and 1:3) was studied using a dissolution apparatus with paddles rotating at 75 rpm. The dissolution was performed in 300 mL of phosphate buffer (pH 6.8) at 37± 0.5°C. At fixed time intervals, samples were withdrawn, filtered, and spectrophotometrically assayed for drug content at 232 nm.

Preparation of zaleplon films

Zaleplon fast dissolving films were prepared by solvent casting technique using different film forming polymers as shown in table 1. The polymeric solution was prepared by dissolving the determined quantities of different polymers in 10 ml distilled water, to which zaleplon complexes, propylene glycol and other ingredients were added. The suspension was stirred for 30 minutes and degassed to remove air entrapment by using ultrasonicator. The resulting solution was cast onto galas container and dried under ambient conditions. The films were then carefully removed from the container and cut into strips of dimension 3x3 cm, and stored in an air tight glass container for further investigations.

Table 1: Formulations of fast dissolving zaleplon films

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAL: βCD</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Instant pure-cote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPMC E15</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Kollidicat IR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lycoat NG 73</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Propylene glycol (ml)</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Menthol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Water to dissolve</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

N.B. all amounts in mg.

Evaluation of fast dissolving films

The prepared films were subjected for in vitro evaluation tests as film thickness, folding endurance, drug content, disintegration time and in vitro drug release. Thickness of the film was measured by using screw gauge with a least count of 0.01 mm at different places on the film. The thickness of the film was measured at three different places and the average was measured. Folding endurance of the film was determined by repeatedly folding a small strip of the film at the same place and the number of folds till breaking the film was recorded. The experiment was performed in triplicate and the mean was calculated. The films were tested for drug content uniformity by UV spectrophotometric method. The absorbance values were measured at a wavelength of 232 nm. The in vitro disintegration time of the films was determined by placing them in a glass Petri dish (6.5 cm in diameter) containing 25 ml of distilled water at 37°C, with swirling every 10 seconds. The time at which the film starts to break or disintegrates was recorded. In vitro
dissolution study was carried out in a 300 ml of buffer solution (pH 6.8) at 37 ± 0.5 °C at 75 rpm. At fixed time intervals, samples were withdrawn, filtered, and spectrophotometrically assayed for drug content at 232 nm. Percent drug released after 20 minutes was determined.

Effect of zaleplon on melatonin secretion in human volunteers

Twelve non-smoker drug-free healthy male volunteers, aged 33.2±11.7 years (mean standard deviation), participated in the study. Women were excluded to avoid the effect of the menstrual cycle and contraceptives on melatonin secretion (16). None of the volunteers had a history of medical, neurological or psychiatric disease. The study protocol, which complied with the recommendations of the Helsinki Declaration, was fully approved and performed by Drug Research Centre (DRC, a certified center that performs bioequivalence and bio waiver studies based on Central Administration for Pharmaceutical Affairs CAPA guidelines & international regulations on Good Clinical Practice provided by benchmark regulatory bodies). Persons excluded from the test were those having made a transoceanic flight in the last month before the study; sleep problems, abnormal results in the metabolic or urine tests and having a work on night shifts. Volunteers were asked to refrain from using sun glasses, drinking coffee, tea 12 h before and for the duration of the experiment. All subjects were subjected to a randomized, double-blind and cross-over design. The first blood extraction was taken just before the ingestion of the market tablet or zaleplon film (10 mg). Blood samples were drawn after 1, 2, 3, 4 and 8 hours, centrifuged at 3000 rpm for 10 min, and serum was separated and frozen at −30 °C until assayed for melatonin. Serum melatonin concentration was determined by an Enzyme-LinkedImmunosorbent Assay (ELISA), type Reader, Tecae; model A5082, spectra classic, Austria.

RESULTS AND DISCUSSION

Characterization of zaleplon complex:

Differential scanning calorimetry (DSC)

Inclusion complex between the drug and βCD was identified by DSC. Figure (1) shows the DSC thermograms for zaleplon, βCD and 1:1 inclusion complex. DSC curve of the drug shows a sharp endothermic Tmax of 187.4 °C corresponding to the melting point of crystalline form of zaleplon, this high melting point is indicative of strong crystal lattice energy which is one of the factors responsible for lower aqueous solubility (17). DSC curve of β-Cyclodextrin showed a slightly sharp endothermic peak at 121.90°C corresponding to the melting point of β-Cyclodextrin. The drug-βCD complex DSC shows a decrease in the drug peak ensuring an interaction between them.

Fourier Infrared spectrophotometry (FTIR)

Fourier Infrared spectrophotometry (FTIR) has been employed as a useful tool to identify drug excipient interactions (18). It provides important information regarding the confirmation of inclusion complex formation of βCDs with drug molecules. IR spectrum of zaleplon (Figure 2a) is characterized by principal absorption peaks at 3088.3 cm⁻¹ for C–H aromatic, 2933.7 cm⁻¹ for C–H aliphatic, 1614.4 cm⁻¹ for C=N, 1222.8 cm⁻¹ for C–N and 15765.8 cm⁻¹ for C=C aromatic. Zaleplon shows strong absorption peaks at 2231.6 cm⁻¹ and 1651 cm⁻¹ indicating presence of cyanide and amide carbonyl group respectively. Peaks at 684 and 801 cm⁻¹ may be assigned to aromatic stretching of the phenyl group in the molecule which is m-substituted. The prominent peaks of β-CD are at 3363.2 cm⁻¹, 2926 cm⁻¹ and 1001 cm⁻¹ corresponding to C–H stretching, C–H stretching, and OH bending, respectively (Figure 2b). Other peaks appear at 1647.2 cm⁻¹ for C=O (amide I band), at 1417.6 cm⁻¹ for CH2 deformation, at 937.4 cm⁻¹ for CH2 stretching and at 856.3 cm⁻¹ for C–H bending. The IR spectra of the inclusion complex (Figure 2c) shows that peak for cyanide bond of the drug was decreased and also C–H aromatic bond at 3008.3 cm⁻¹ was disappeared indicating inter molecular hydrogen bonding between zaleplon and β-CD. Disappearances of several guest signals can be considered as a confirmation of the formations of the binary system. It was noted in the IR pattern of the complex that it was dominated by the betacyclodextrin vibrational bands. This is because, structurally, betacyclodextrins huge in size as it is built up from seven repeating monomer units therefore, its significant control on the IR profile of the complex should be expected (19). Furthermore, this finding suggests that only part of zaleplon was encapsulated in the beta-cyclodextrin cavity (20).

Figure 1: DSC thermogram of (a) zaleplon, (b) β-cyclodextrin and (c) inclusioncomplex
The folding endurance values of the prepared films were found to be in the range from 46 to 69. The drug content values were between 98.11 to 100.91%. The disintegration time of the films was from 32.9 to 43.5 seconds (Table 2).

Table 2: Evaluation of zaleplon films

<table>
<thead>
<tr>
<th>Drug content (%)</th>
<th>Folding endurance</th>
<th>Film thickness (mm)</th>
<th>Disintegration time (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>98.51±0.71</td>
<td>624±0.12</td>
<td>33.2±0.04</td>
</tr>
<tr>
<td>F2</td>
<td>98.99±0.51</td>
<td>54±0.51</td>
<td>34.5±0.06</td>
</tr>
<tr>
<td>F3</td>
<td>100.91±0.56</td>
<td>53±0.01</td>
<td>33.5±0.08</td>
</tr>
<tr>
<td>F4</td>
<td>99.51±0.56</td>
<td>57±0.10</td>
<td>35.2±0.10</td>
</tr>
<tr>
<td>F5</td>
<td>99.12±0.66</td>
<td>61±0.12</td>
<td>33.0±0.09</td>
</tr>
<tr>
<td>F6</td>
<td>98.11±0.58</td>
<td>61±0.01</td>
<td>43.0±0.09</td>
</tr>
<tr>
<td>F7</td>
<td>98.83±0.85</td>
<td>62±0.02</td>
<td>32.9±0.01</td>
</tr>
<tr>
<td>F8</td>
<td>100.87±0.89</td>
<td>46±0.12</td>
<td>43.5±0.02</td>
</tr>
</tbody>
</table>

Regarding the in vitro release, films prepared with kollicoat IR (F1 and F2) showed a complete drug release after 15 minutes as shown in figure (4). This can be explained on the bases that presence of kollicoat IR causes increase in drug release due to wetting ability and conversion of crystalline form to amorphous one. Because of the formation of amorphous phases, the dissolution rate is very high since the drug simply dissolved along with the polymer (22). Also the polyvinyl alcohol moiety of kollicoat provides good film forming properties and the polyethylene glycol part acts as an internal plasticizer leading to excellent flexibility. In contrast to other film formulations, the plasticizer cannot migrate because it is covalently bound in the molecule. Instant pure-cote showed nearly complete drug release after 20 minutes (F5), which could be due to the higher swelling ability observed for the pregelatinized starches. This higher swelling ability could lead to the absorption of large quantities of water into the film mass and the subsequent generation of a higher swelling force, which would initiate the active mechanism of disintegration. Lycoat NG 73 which is a granular hydroxypropyl starch, showed the same dissolution pattern of instant pure-cote with the benefit of hydroxyl propyl group that increases the polarity and thus the solubility of the drug. Formulations with HPMC E15 showed 95.7% drug release (F6), this is due to the ability of the hydrophilic polymer to absorb water, thereby promoting the dissolution, and hence the release. Moreover, the hydrophilic polymers would reach out of the film and hence, create more pores and channels for the drug to diffuse out of the films (23). Increasing the plasticizer amount increases the dissolution rate in all formulations; this is because propylene glycol which is a hydrophilic polymer will increase the partition coefficient that is a helpful property to increase the diffusion of zaleplon through the films (24).
Zaleplon films prepared with kollicoat IR showed maximum in vitro release among other film forming agents, that’s why it was used to study the therapeutic effect of zaleplon in human volunteers. Figure (5) shows the amount of melatonin in plasma human volunteers after administration of zaleplon fast dissolving films and market tablet. It’s clear that melatonin level was slightly increased during the first three hours, while melatonin level increased significantly from zaleplon films during the next five hours.

Numerical integration using trapezoidal method was obtained to calculate the melatonin Area Under the Curve for both zaleplon films and market tablets during the first eight hours and found to be 410.93 and 217.32 respectively. Figure (6) shows the increase in melatonin level in zaleplon films and market tablet. It's clear that the increase in melatonin level was higher in zaleplon films and the increase was clear after the fourth hour. Unpaired t-test was conducted with Prism Graph Pad (version 5.04), USA, to compare the mean melatonin AUC in zaleplon films and market tablets. A P-value < 0.0001 was defined to be extremely significant.

CONCLUSION

In this study, zaleplon solubility was increased by complexation with betacyclodextrin. Zaleplon fast dissolving films were prepared using different film forming polymers and those prepared with kollicoat IR showed higher in vitro drug release. Zaleplon films showed higher melatonin level in human serum and higher Area under the Curve than market tablets.

REFERENCES

How to cite this article:

All © 2010 are reserved by Journal of Global Trends in Pharmaceutical Sciences.