DEVELOPMENT OF A UV-SPECTROPHOTOMETRIC METHOD FOR THE SIMULTANEOUS DETERMINATION OF ROSUVASTATIN CALCIUM AND ASPIRIN IN TABLETS

S. Ashok Reddy*, Dr. K.B Chandrasekhar

Department of Pharmaceutical Analysis, Safa College of Pharmacy, Kurnool, (A.P), INDIA
Director, Research and Development Cell (R&D), JNTUA, Anantapur, (A.P), INDIA

*Corresponding Author E-mail: reddi 0092002@yahoo.com

ABSTRACT

A specific, rapid and simple UV spectrophotometric method with good sensitivity was developed and validated for the simultaneous quantification of Rosuvastatin calcium and aspirin in standard solutions and tablets. The method employed solving of simultaneous equations based on the measurement of absorbance maxima at 243 and 207 nm, for Rosuvastatin calcium and aspirin, respectively. The calibration curve was linear for both drugs in a concentration range of 3--18(μg/ml) and 2-12(μg/ml). It can be concluded from the results that present method for the simultaneous determination of Rosuvastatin calcium and aspirin in tablets is specific, rapid and simple with good sensitivity. This analytical method is also applicable in ordinary laboratories also. It can also be adopted for quality control tests for these drugs in tablets.

Key words: UV Spectrophotometric method, Rosuvastatin calcium, Aspirin, and Simultaneous determination.

INTRODUCTION:

Rosuvastatin calcium is chemically bis [(E)-7 [4-(4-fluorophenyl)-6 isopropyl-2-[methyl(methylsulphonyl)amino] pyrimidin-5-yl] (3R,5S) -3,5-dihydroxyhept-6-enoic acid] Calcium salt.1-2 It is a lipid lowering drug. It inhibits the enzyme 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme that converts HMG-CoA to mevalonate; a precursor of cholesterol and there by checks the synthesis of cholesterol. It is used in the treatment of hypercholesterolemia and
dyslipidemia. The typical dose of rosvastatin calcium is 5-40 mg per day and it reduces 40-70% LDL level. A survey of literature showed few UV spectrophotometric, few HPLC, few HPTLC, two chromatography stability indicating method, few LC-MS method and few solid phase extraction using tandem mass spectroscopy methods are available for the estimation of rosvastatin in pharmaceutical preparation and in biological fluids.

Aspirin is also known as acetylsalicylic acid is a salicylate drug, often used as an analgesic, antipyretic, anti-inflammatory and has an anti-platelet effect by inhibiting the production of thromboxane, which under normal circumstances binds platelet molecule together to create a patch over damage of the walls within blood vessels. Chemically it is 2-acetoxybenzoic acid and is a non-steroidal anti-inflammatory drug (NSAIDs) and shows inhibition of the enzyme cyclooxygenase and it is official in Indian Pharmacopoeia, The United States Pharmacopoeia and British Pharmacopoeia.

EXPERIMENTAL

2.1 Instruments and reagents

A Shimadzu UV - 1800 UV/VIS spectrophotometer was used with 1 cm matched quartz cell. All the chemicals used were of analytical grade. Methanol A.R. grade were procured from Loba Chem.Ltd., Mumbai. An analytically pure sample of Rosuvastatin calcium and aspirin were procured asgift sample from Chandralabs Hyderabad. Tablet formulation was procured from a local pharmacy.

2.2 Preparation of standard stock solution

Stock solutions of both the drugs were prepared by dissolving accurately weighed 100 mg of each standard drug in 100 ml methanol. Both stock solution (100 μg/ml) were further diluted to produce solutions of 10 μg/ml Rosuvastatin calcium, 15 μg/ml aspirin and scanned in the entire UV range (200 - 400 nm) to determine the absorbance maxima. Absorbance maxima of Rosuvastatin calcium and aspirin were detected at 243 nm (λ2) and 207 nm (λ1), respectively. Both the spectras were overlain. The calibration curve was linear for both drugs in a concentration range of 3-18(μg/ml) and 2-12(μg/ml).

2.3 Analysis of marketed formulations

Twenty tablets of formulation were accurately weighed and powdered. An amount of powder equivalent to 10 mg and 15mg of Rosuvastatin calcium and aspirin were weighed and dissolved in 100 ml of methanol. It was filtered through Whatman filter paper No. 41 after subjecting 30 minutes for sonicating and then final dilution was made with methanol to get final concentration.

2.4 Simultaneous equations method

The developed method was based on simultaneous equations method. Absorbance maxima of Rosuvastatin calcium and aspirin were 243nm (λ2) and 207 nm (λ1), respectively. The absorptivity coefficients of the two drugs were determined by using Beer’s law. The overlain spectra of Rosuvastatin calcium and aspirin are represented in [Figure - 1]. A set of two simultaneous equations was developed using these absorptive coefficients.

\[C_x = A_1 a y_2 - A_2 a y_1 / a x_1 a y_2 - a x_2 a y_1 \]
Cy = A1 a x2 – A2 a x1 / a y1ax2 - ay2a x1

A1 and A2 are absorbances of mixture at 207 nm and 243 nm respectively, ax1 and ax2 are absorptivities of Aspirin at λ1 and λ2 respectively and ay1 and ay2 are absorptivities of Rosuvastatin at λ1 and λ2 respectively. Cx and Cy are concentrations of Aspirin and Rosuvastatin respectively.

FIGURE-1:

![Image of a graph showing absorbance measurements for Aspirin and Rosuvastatin]

Table No. 1: Calibration parameters

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Parameter</th>
<th>Rosuvastatin</th>
<th>Aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absorption Maxim(nm)</td>
<td>244(nm)</td>
<td>207(nm)</td>
</tr>
<tr>
<td>2</td>
<td>Beer’s Law limits(mg/ml)</td>
<td>3--18(µg/ml)</td>
<td>2-12(µg/ml)</td>
</tr>
<tr>
<td>3</td>
<td>Regression equation (y)*</td>
<td>0.045</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Slope (b) Intercept (a)</td>
<td>0.004</td>
<td>0.176</td>
</tr>
<tr>
<td>4</td>
<td>Correlation coefficient</td>
<td>0.999</td>
<td>0.998</td>
</tr>
<tr>
<td>5</td>
<td>Limit of detection</td>
<td>0.0859</td>
<td>0.2319</td>
</tr>
<tr>
<td>6</td>
<td>Limit of quantification</td>
<td>0.2682</td>
<td>0.7239</td>
</tr>
</tbody>
</table>

*y = a ± bx; where x is the concentration in mg/ml and y is absorbance.

Table No 2: Results of Recovery study

<table>
<thead>
<tr>
<th>Rosuvastatin</th>
<th>Absorbance</th>
<th>Recovery</th>
<th>Recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>8+1=9</td>
<td>0.396</td>
<td>8.82</td>
</tr>
<tr>
<td>100</td>
<td>10+1=10</td>
<td>0.492</td>
<td>10.96</td>
</tr>
<tr>
<td>120</td>
<td>12+1=13</td>
<td>0.59</td>
<td>13.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspirin</th>
<th>Absorbance</th>
<th>Recovery</th>
<th>Recovery%</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>12+1=13</td>
<td>0.654</td>
<td>13.55</td>
</tr>
<tr>
<td>100</td>
<td>15+1=16</td>
<td>0.779</td>
<td>16.14</td>
</tr>
<tr>
<td>120</td>
<td>18+1=19</td>
<td>0.858</td>
<td>17.77</td>
</tr>
</tbody>
</table>

S. Ashok Reddy et al/JGTPS/Volume 3, Issue4, October-December 2012
RESULT AND DISCUSSION

The method was validated according to International Conference on Harmonization guidelines. Linear regression equations (intercepts and slopes) for mixtures of Rosuvastatin calcium and aspirin were established. The high values of the correlation coefficients and the values of Y-intercepts close to zero indicate the good linearity of the calibrations. The values of slope, intercept and correlation coefficient values are given in Table 1. Limit of detection and limit of quantitation were determined by using the formula based on the standard deviation of response and the slope. The limit of detection and limit of quantification were calculated by using the equation \(\text{LOD} = 3.3 \times \sigma / S\) and \(\text{LOQ} = 10 \times \sigma / S\), where \(\sigma\) is the standard deviation of intercept, \(S\) is the slope and it is mentioned in Table 1. To study the accuracy of the developed method, and to check the interference of excipients used in the dosageforms, recovery studies were carried out by the standard addition method and results are shown in Table 2. Assay results of Aspirin and Rosuvastatin Calcium in tablet are shown in Table 3.

CONCLUSION

The developed method was found to be simple, sensitive, accurate and reproducible and can be used for routine quality control analysis of Rosuvastatin calcium and aspirin in bulk and in pharmaceutical formulations.

ACKNOWLEDGEMENT

We would like thank to Chandra labs Hyderabad for providing reference sample of Rosuvastatin calcium and aspirin respectively to facilitate this work and also like to thank Dr.K.B. Chandrasekhar, Director of Evaluation JNTU Ananthapur for giving valuable suggestions during the experiment.

Table No 3: Assay results of Aspirin and Rosuvastatin Calcium in tablet.

<table>
<thead>
<tr>
<th>ASSAY</th>
<th>Absorbance</th>
<th>Concentration</th>
<th>Labeled (mg)</th>
<th>%Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPIRIN</td>
<td>0.724</td>
<td>15mcg</td>
<td>75mg</td>
<td>100%</td>
</tr>
<tr>
<td>ROSUVASTATIN</td>
<td>0.093</td>
<td>2mcg</td>
<td>2mg</td>
<td>99%</td>
</tr>
</tbody>
</table>

* is average of six determinations.
REFERENCES
2. Indian pharmacopoeia, The Indian Pharmacopoeia, 2010 ,volume 3, 2071
13. Sultan N., Arayne M., Naveed S., Simultaneous determination of captopril and statins in

22. Indian Pharmacopoeia, 2010; volume-1: pg no- 847.

