INTRODUCTION

About 95% of all new potential therapeutic drugs (APIs) exhibit low and variable oral bioavailability due to their poor aqueous solubility at physiological pH and consequent low dissolution rate. These drugs are classified as class II drugs under BCS with low solubility and high permeability characters and pose challenging problems in their pharmaceutical product development process. Nimesulide, a widely prescribed anti-inflammatory and analgesic drug belongs to class II under BCS and exhibit low and variable oral bioavailability due to its poor aqueous solubility. As such it needs enhancement in the dissolution rate and bioavailability to derive its maximum therapeutic efficacy. The objective of the present study is to prepare and evaluate solid dispersions of Nimesulide in combined carriers, a water dispersable new modified starch namely Starch 1500 and a water soluble surfactant namely Poloxamer 188 for enhancing the dissolution rate and dissolution efficiency of Nimesulide in a 2² factorial study. The individual and combined effects of the modified starch, Starch 1500 and Poloxamer 188 in enhancing the dissolution rate and dissolution efficiency of Nimesulide were evaluated in a 2² factorial study. Solid dispersions of Nimesulide in Starch 1500 (modified starch) and Poloxamer 188 (surfactant) alone and in combination were prepared as per 2² factorial design by kneading method and were evaluated for dissolution rate and dissolution efficiency. The dissolution rate (K₁) and dissolution efficiency (DEₐ₀) of Nimesulide could be significantly enhanced by solid dispersion in Starch1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant). A 9.42, 12.33 and 35.28 fold increase in the dissolution rate (K₁) and a 7.24, 5.97 and 12.70 fold increase in the dissolution efficiency (DEₐ₀) was observed respectively with solid dispersions NSD₁, NSD₂ and NSD₃ when compared to F1 (Nimesulide pure drug). Combination of Starch 1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant) gave a markedly higher enhancement in the dissolution rate (K₁) and dissolution efficiency (DEₐ₀) of Nimesulide than is possible with them alone. ANOVA indicated that the individual and combined effects of Starch 1500 (factor A) and Poloxamer 188 (factor B) in enhancing the dissolution rate (K₁) and dissolution efficiency (DEₐ₀) are highly significant (P < 0.01). Hence solid dispersion of Nimesulide in combined carriers consisting of Starch 1500 and Poloxamer 188 is recommended to enhance the dissolution rate and dissolution efficiency of Nimesulide, a BCS class II drug.

Keywords: Nimesulide, Starch 1500, Poloxamer, Solid dispersions, factorial study

ABSTRACT

Nimesulide, a widely prescribed anti-inflammatory and analgesic drug belongs to class II under BCS and exhibit low and variable oral bioavailability due to its poor aqueous solubility. As such it needs enhancement in the dissolution rate and bioavailability to derive its maximum therapeutic efficacy. The objective of the present study is to prepare and evaluate solid dispersions of Nimesulide in combined carriers, a water dispersable new modified starch namely Starch 1500 and a water soluble surfactant namely Poloxamer 188 for enhancing the dissolution rate and dissolution efficiency of Nimesulide in a 2² factorial study. The individual and combined effects of the modified starch, Starch 1500 and Poloxamer 188 in enhancing the dissolution rate and dissolution efficiency of Nimesulide were evaluated in a 2² factorial study. Solid dispersions of Nimesulide in Starch 1500 (modified starch) and Poloxamer 188 (surfactant) alone and in combination were prepared as per 2² factorial design by kneading method and were evaluated for dissolution rate and dissolution efficiency. The dissolution rate (K₁) and dissolution efficiency (DEₐ₀) of Nimesulide could be significantly enhanced by solid dispersion in Starch1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant). A 9.42, 12.33 and 35.28 fold increase in the dissolution rate (K₁) and a 7.24, 5.97 and 12.70 fold increase in the dissolution efficiency (DEₐ₀) was observed respectively with solid dispersions NSD₁, NSD₂ and NSD₃ when compared to F1 (Nimesulide pure drug). Combination of Starch 1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant) gave a markedly higher enhancement in the dissolution rate (K₁) and dissolution efficiency (DEₐ₀) of Nimesulide than is possible with them alone. ANOVA indicated that the individual and combined effects of Starch 1500 (factor A) and Poloxamer 188 (factor B) in enhancing the dissolution rate (K₁) and dissolution efficiency (DEₐ₀) are highly significant (P < 0.01). Hence solid dispersion of Nimesulide in combined carriers consisting of Starch 1500 and Poloxamer 188 is recommended to enhance the dissolution rate and dissolution efficiency of Nimesulide, a BCS class II drug.

Keywords: Nimesulide, Starch 1500, Poloxamer, Solid dispersions, factorial study
filler, a disintegrant or a binder. Starches are modified to alter one or more of its key physical or chemical properties. Starch 1500 is a physically modified starch used as diluents and directly compressible vehicle in tablet formulations. Though modified starches and surfactant, Poloxamer 188 have been used individually as carriers in solvent deposition and solid dispersion systems respectively, no reports are available on their combined use in enhancing the dissolution rate of poorly soluble drugs.

The objective of the present study is to prepare and evaluate solid dispersions of Nimesulide in combined carriers, a water dispersible modified starch (Starch 1500) and a water soluble surfactant (Poloxamer 188) for enhancing the dissolution rate and dissolution efficiency of Nimesulide in a 2² factorial study. The individual and combined effects of the two carriers, Starch 1500 and Poloxamer 188 in enhancing the dissolution rate and dissolution efficiency of Nimesulide were evaluated in a 2² factorial study.

EXPERIMENTAL

Materials:

Nimesulide was a gift sample from M/s Natco Drugs Ltd., Hyderabad. Poloxamer 188, Starch 1500 and methanol were procured from commercial sources. All other materials used were of Pharmacopoeial grade.

Estimation of Nimesulide:

An UV Spectrophotometric method based on the measurement of absorbance at 240 nm in phosphate buffer of pH 6.8 was used for the estimation of Nimesulide. The method was validated for linearity, accuracy, precision and interference. The method obeyed Beer’s law in the concentration range of 1-10 µg/ml. When a standard drug solution was repeatedly assayed (n=6), the relative error and coefficient of variance were found to be 0.94% and 1.03% respectively. No interference by the excipients used in the study was observed.

Preparation of Solid Dispersions in Combined Carriers:

Solid dispersions of Nimesulide in Starch 1500 and Poloxamer 188 as per 2² factorial designs were prepared by kneading method. The required quantities of drug and Poloxamer 188 were dissolved in the solvent methanol to get a clear solution in a dry mortar. Starch 1500 powder (100 mesh) was added to the drug-surfactant solution in the motor and mixed. The mixture was kneaded for 30 min by continuous trituration. Small volume of the solvent was added to maintain the mixture as thick slurry during kneading process. Trituration was continued until a dry mass was obtained. The mass obtained was further dried at 45°C for 1 hour in a hot air oven. The dried product was powdered and passed through mesh no. 100 in each case.

Estimation of Drug Content of Solid Dispersions:

From each batch four samples of solid dispersion equivalent to 20 mg of the medicament was taken into a 100 ml conical flask and extracted with 3 x 10 ml quantities of methanol. The methanolic extracts were filtered and collected into 50 ml volumetric flask and the volume was made up to 50 ml with methanol. The solution was subsequently diluted with phosphate buffer of pH 6.8 and assayed for the Nimesulide content at 240 nm.

Dissolution Rate Study:

Dissolution rate of Nimesulide from various solid dispersions prepared was studied in water (900 ml) employing Cadmec Dissolution Rate Test Apparatus with a paddle stirrer at 50rpm. A temperature of 37±1°C was maintained throughout the study. Nimesulide or its solid dispersion equivalent to 50 mg of Nimesulide was used in the test. Samples of dissolution fluid (5 ml) were withdrawn through a filter (0.45 µm) at different intervals of time, suitably diluted and assayed for Nimesulide at 240 nm. The dissolution fluid withdrawn at each sampling time was replaced with fresh dissolution fluid and suitable correction is made in calculating the amount of drug dissolved. All dissolution rate experiments were conducted in triplicate (n=3).

RESULTS AND DISCUSSION

In the present study solid dispersions of Nimesulide in Starch 1500 (a modified starch) and Poloxamer 188 (surfactant) were prepared as per 2² factorial design by kneading method with a view to enhance the dissolution rate and dissolution efficiency of Nimesulide. The individual main effects and combined (interaction) effects of Starch 1500 (factor A) and Poloxamer 188 (factor B) on the dissolution rate and dissolution efficiency (DE₃₀) of Nimesulide were evaluated in a 2² factorial study. For this purpose two levels of Starch 1500 (0 and 1:1 ratio of drug : carrier) and two levels of Poloxamer 188 (0 and 2%) were selected and the corresponding four treatments involved in the 2² factorial study were Nimesulide pure drug (1); Nimesulide- Starch 1500 (1:1) solid dispersion (NSD₁₁); Nimesulide – Poloxamer 188 (2%) solid dispersion (NSD₂) and Nimesulide – Starch 1500 (1:1) – Poloxamer 188 (2%) solid dispersion (NSD₁₂). The above mentioned solid dispersions were prepared by kneading method.

All the solid dispersions prepared were found to be fine and free flowing powders. Low C.V (< 1.0%) in the percent drug content indicated uniformity of drug content in each batch of solid dispersions prepared. The dissolution of Nimesulide as such and from various solid dispersions was studied in water to evaluate the individual and combined effects of the two factors involved. The dissolution profiles of various solid dispersions prepared are shown in Fig.1. The dissolution parameters of Nimesulide and its solid dispersions prepared are given in Table 1.
All solid dispersions prepared gave rapid and higher dissolution of Nimesulide when compared to Nimesulide pure drug. The dissolution data were analyzed as per zero order and first order kinetics in each case. The correlation coefficient (r) values were higher in the first order model than in zero order model indicating that the dissolution of Nimesulide as such and from its solid dispersions followed first order kinetics. The correlation coefficient (r) values in the first order model were found to be in the range 0.912 – 0.991. The corresponding dissolution rate (K₁) values were higher in the first order model (interaction) effects of Starch 1500 (factor A) and Poloxamer 188 (factor B) in enhancing the dissolution rate and dissolution efficiency of Nimesulide. The results of ANOVA are given in Tables 2-3. ANOVA indicated that the individual and combined effects of Starch 1500(factor A) and Poloxamer 188 (factor B) in enhancing the dissolution rate (K₁) and dissolution efficiency (DE₃₀) are highly significant (P < 0.01).

CONCLUSION

The dissolution rate (K₁) and dissolution efficiency (DE₃₀) of Nimesulide could be significantly enhanced by solid dispersion in Starch 1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant). A 9.42, 12.33 and 35.29 fold increase in the dissolution rate (K₁) and a 7.24, 5.97 and 12.70 fold increase in the dissolution efficiency (DE₃₀) was observed respectively with solid dispersions NSDₐ, NSDₐ, and NSDₐ when compared to F1 (Nimesulide pure drug). Thus combination of Starch 1500 (a water dispersible modified starch) and Poloxamer 188 (a surfactant) gave a markedly higher enhancement in the dissolution rate (K₁) and dissolution efficiency (DE₃₀) of Nimesulide than is possible with them alone. ANOVA indicated that the individual and combined effects of Starch 1500 (factor A) and Poloxamer 188 (factor B) in enhancing the dissolution rate (K₁) and dissolution efficiency (DE₃₀) are highly significant (P < 0.01).

Table 2: ANOVA of Dissolution Rate (K₁) Values

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>D.F</th>
<th>S.S</th>
<th>MSS</th>
<th>F- ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11</td>
<td>371.90</td>
<td>33.80</td>
<td>-</td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>371.24</td>
<td>123.08</td>
<td>1491.87</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0.66</td>
<td>0.0825</td>
<td>-</td>
</tr>
<tr>
<td>Factor A (starch 1500)</td>
<td>1</td>
<td>315.01</td>
<td>315.01</td>
<td>3818.3</td>
</tr>
<tr>
<td>Factor B (Poloxamer 188)</td>
<td>1</td>
<td>52.74</td>
<td>52.74</td>
<td>639.27</td>
</tr>
<tr>
<td>Factor AB</td>
<td>1</td>
<td>1.380</td>
<td>1.380</td>
<td>16.72</td>
</tr>
</tbody>
</table>

F₀.₀₅(3, 8) = 4.07; F₀.₀₁(1, 8) = 5.32; F₀.₀₁(3, 8) = 7.59; F₀.₀₁(1, 8) = 11.3

Table 3: ANOVA of Dissolution Efficiency (DE₃₀) values

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>D.F</th>
<th>S.S</th>
<th>MSS</th>
<th>F- ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11</td>
<td>4419.00</td>
<td>401.72</td>
<td>-</td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>4417.57</td>
<td>1472.52</td>
<td>8272.58</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>1.43</td>
<td>0.178</td>
<td>-</td>
</tr>
<tr>
<td>Factor A (starch 1500)</td>
<td>1</td>
<td>595.18</td>
<td>595.18</td>
<td>3343.7</td>
</tr>
<tr>
<td>Factor B (Poloxamer 188)</td>
<td>1</td>
<td>149.32</td>
<td>149.32</td>
<td>838.84</td>
</tr>
<tr>
<td>Factor AB</td>
<td>1</td>
<td>44.69</td>
<td>44.69</td>
<td>251.06</td>
</tr>
</tbody>
</table>

F₀.₀₅(3, 8) = 4.07; F₀.₀₁(1, 8) = 5.32; F₀.₀₁(3, 8) = 7.59; F₀.₀₁(1, 8) = 11.3

Hence solid dispersion of Nimesulide in combined carriers consisting of Starch 1500 and Poloxamer 188 is recommended to enhance the dissolution rate and dissolution efficiency of Nimesulide, a BCS class II drug.

REFERENCES

How to cite this article: