

An Elsevier Indexed Journal

ISSN-2230-7346

Journal of Global Trends in Pharmaceutical Sciences

DEVELOPMENT OF VALIDATED STABILITY INDICATING HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY METHOD FOR THE SIMULTANEOUS ESTIMATION OF IVACAFTOR AND TEZACAFTOR IN BULK AND PHARMACEUTICAL **DOSAGE FORM BY RP-HPLC**

Venkatalakshmi V¹, Prasanthi C*², Aruna G¹

¹Department of Pharmaceutical Analysis, Krishna Teja Pharmacy College, Tirupati -517506 Andhra Pradesh. India ²Department of Pharmaceutical Analysis, Annamacharya College of Pharmacy, Rajampet, Andhra Pradesh, India *Corresponding author E-mail: prashanthi.chengalva87@gmail.com ABSTRACT

ARTICLE INFO

Key Words

Ivacaftor, Tezacaftor, **RP-HPLC**, Method development and Method Validation

Objective: Ivacaftor and Tezacaftor are used in treatment of cystic fibrosis in certain people. The aim of the present study was to develop and validate a rapid, simple, sensitive, precise and accurate reverse phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination of Ivacaftor and Tezacaftor in bulk and tablet dosage form. Methods: Chromatographic separation of these two drugs was achieved on Kromosil C18 column (250 mm x 2.1 mm, 1.7 µm) as stationary phase with a mobile phase of acetonitrile: water (55:45 v/v) at a flow rate of 0.9 ml/min isocratically and photo diode array (PDA) detection at 292 nm. The retention times of Ivacaftor and Tezacaftor were found to be 2.212 min and 2.752 min respectively. Results and Discussion: The proposed method was validated for system suitability, linearity, accuracy, precision, LOD, LOO and robustness. The calibration curves were linear in the concentration range of 15-90 to 10-60 μ g/ml of the working concentration (r² = 0.999) for both the drugs in binary mixture. The LOD was found to be 0.07 µg/ml and 0.01 µg/ml and LOQ was found to be 0.22 µg/ml and 0.03 µg/ml for Ivacaftor and Tezacaftor respectively. Conclusion: Hence the proposed RP-HPLC method can be used in routine analysis of drugs in bulk as well as in tablets containing Ivacaftor and Tezacaftor.

INTRODUCTION

Ivacaftor is chemically N-(2, 4-di-tert-butyl-5hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide. Tezacaftor is chemically 1-(2,2-difluoro-2H-1,3-benzodioxol-5-yl)-N-{1-[(2R)-2,3-dihydroxypropyl]- 6-fluoro-2- (1hydroxy-2-methylpropan-2-yl)-1Hindol-5cvclopropane-1carboxamide. vl} А combination of above drugs is used in the management of cystic fibrosis. Extensive literature survey revealed that there were

analytical methods for the estimation of Ivacaftor with Lumacaftor [1-3]. Α bioanalytical method has been proposed for the estimation of Ivacaftor and Lumacaftor [4]. Two UPLC methods has been published for the estimation of Ivacaftor and Tezacaftor [5,6]. An ultra violet spectroscopic method has been established for the estimation of Ivacaftor and Tezacaftor [7]. An RP-HPLC method has been proposed for the estimation of Ivacaftor alone and in combination with Tezacaftor [8-11]. In the proposed methods for the simultaneous estimation of Ivacaftor and Tezacaftor, the retention times of drugs were more and used buffers as mobile phases for the chromatographic analysis which decreases the life of the column and increases analysis time. In the present study a rapid and accurate RP-HPLC method for simultaneous determination of Ivacaftor and Tezacaftor in bulk and pharmaceutical formulation using a simple mobile phase.

MATERIALS AND METHODS

Materials: Ivacaftor and Tezacaftor pure drugs and formulation containing 150 mg of Ivacaftor and 100 mg of Tezacaftor were obtained from Spectrum Pharma Research Solutions, Hyderabad. Distilled water and acetonitrile were from Rankem.

Chromatographicconditions:Chromatographic separation was performedon reverse phase Kromosil C18 (250 x 2.1mm, 1.7 μ m) column. The mobile phaseconsisted of acetonitrile and water waspumped n the ratio of 55:45 v/v with photodiode array detection at 292 nm. The flow ratewas set at 0.9 ml/min for simultaneousdetermination of Ivacaftor and Tezacaftor.

Diluent: Acetonitrile and water in the ratio of 55:45%v/v was used as diluent.

Standard solution preparation: Accurately 15 mg of Ivacaftor and 10 mg of Tezacaftor standards were accurately weighed and transferred into a 25 ml clean dry volumetric flask, 15 ml of diluent was added, sonicated for 10 min and made up to the final volume with diluent. Further 1 ml from the above stock solution was taken into a 10 ml volumetric flask and made up to 10 ml with diluent so as to get final concentration of 60 μ g/ml of Ivacaftor and 40 μ g/ml of Tezacaftor.

Sample solution preparation: 20 tablets were weighed and crushed. A powder equivalent to 15 mg of Ivacaftor and 10 mg of Tezacaftor was taken and then transferred into a 25 ml clean dry volumetric flask, 15 ml of diluent was added, sonicated for 25 min and made up to the final volume with diluent. Further 1 ml from the above stock solution was taken into a 10 ml volumetric flask and made up to 10 ml with diluent. Forced degradation samples preparation: The drugs were subjected to various stress acid, alkali, conditions like oxidative. photolytic thermal conditions and recommended by ICH guidelines. The degraded products were generated and analysed. For acid degradation study, 1 ml of 2 N HCl was added to 1 ml of stock solution and refluxed for 30 min at 60 °C. To this 1 ml of 2 N NaOH was added to neutralize the resultant solution and was diluted to 10 ml with diluent. For alkali degradation a study, 1 ml of 2 N NaOH was added to 1 ml of 2 N NaOH was added. To this 1 ml of 2 N HCl was added to neutralize the resultant solution and was diluted to 10 ml with diluent. For oxidative degradation, 1 ml of 20 % hydrogen peroxide was added to 1 ml of standard stock solution. The solution was kept for 30 min at 60 °C. The resultant solution was diluted to 10 ml with diluent. For thermal degradation, the standard stock solution was taken in a beaker and placed in oven at 105 °C for 1 hr and 1 ml from the resultant solution was diluted to 10 ml with diluent. For photo stability studies, the standard drug solution to UV light by keeping the beaker in UV chamber for 1 day, from the resultant solution 1 ml was taken and diluted up to 10 ml with diluent.

of formulation: Assay The standard preparations were made from the reference standard at target concentration level and preparations sample were made from formulation. Both sample and standards are injected six times into the chromatographic system. Amount of drug present in the formulation was estimated by taking the standard as the reference. The percentage assay was calculated.

Method **Development:** Many chromatographic conditions were tried for better separation and resolution. Kromosil column was found satisfactory. Peak purity of Ivacaftor and Tezacaftor as checked using photo diode array detector and 292 nm was considered satisfactory for detecting both the drugs with adequate sensitivity. A typical RP-HPLC chromatogram for simultaneous determination of Ivacaftor and Tezacaftor from standard preparation and from pharmaceutical formulation was shown in Fig.1 and 2.

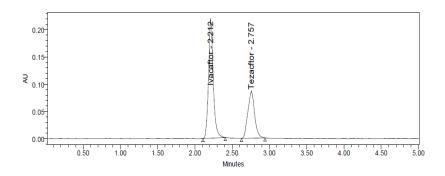


FIG. 1: Chromatogram of Ivacaftor and Tezacaftor in standard preparation

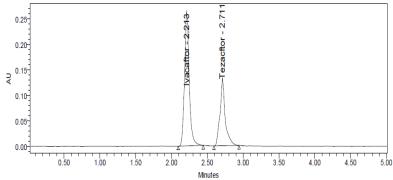


FIG. 2: Chromatogram of Ivacaftor and Tezacaftor in sample preparation

Analytes	Retention Times (min)	Resolution	Theoritical Plates	Tailing Factor	Peak Area
Ivacaftor	2.212	-	6038	1.18	1065059
Tezacaftor	2.757	3.7	3689	1.08	560664

#Min: Minutes	

	Table 2: Results Of Method Precision				
Ν	Ivacaftor		Tezacaftor		
	Rt (min)	Peak Area	Rt (min)	Peak Area	
Injection 1	2.213	1057350	2.702	569597	
Injection 2	2.214	1050225	2.705	566187	
Injection 3	2.216	1058503	2.709	567325	
Injection 4	2.216	1060109	2.711	566441	
Injection 5	2.216	1058971	2.711	566080	
Injection 6	2.216	1052585	2.711	564759	
Average	2.218	1056291		566732	
SD		3957		1628	
RSD(%)		0.4		0.3	

Rt: Retention Times, # N: Number of Injections=6

concentration (µg/ml)

	Table	3: Results Of Linear	rity	
	Analytes	Correlatio	on Coefficient (R ²)	
	Ivacaftor		0.999	
	Tezacaftor		0.999	
	Table	4: Results of Accura	acy	
Analytes	Pre-Analysed	Amount added	Average Amount	Mean Recovery*
	Sample Conc.	(µg/ml)	Found*	(%)
	(µg/ml)		(µg/ml)	
Ivacaftor	60	30	29.97	99.89
	60	60	59.83	99.73
	60	90	90.13	100.46
Tezacaftor	40	20	20.09	100.52

* Represents mean of triplicate observations

40

60

39.80

60.04

40

40

99.52

100.07

Table 5: I	Results of Ro	bustness		
	Ivac	aftor	Tezac	aftor
Parameter	Tailing*	Plate	Tailing*	Plate
		Count*		Count
Less Flow Rate (0.8 Ml/Min)	1.23	4771	1.26	6505
More Flow Rate (1.0 Ml/Min)	1.24	4574	1.24	4455
Less Column Temperature (28° C)	1.26	4281	1.20	6188
More Column Temperature (32° C)	1.26	4321	1.21	1835
Less Organic Phase (45:55)	1.26	4506	1.30	2600
More Organic Phase (35:65)	1.30	4691	1.19	6559

* Represents mean of triplicate observations

	I able 6: K	esuits of Forced Deg	radation Studies	
Type Of	Iva	acaftor	Tez	zacaftor
Degradation	Purity Angle	Purity Threshold	Purity Angle	Purity Threshold
Acid	0.213	0.335	0.282	0.462
Base	0.673	0.709	0.175	0.339
Peroxide	1.084	1.137	0.397	0.417
Thermal	0.999	1.499	0.226	0.332
Uv	0.350	1.186	0.338	0.560

Table 7: Results of Assay Formulation

S. No.	Ivacaftor % Assay	Tezacaftor % Assay
1	99.80	100.53
2	99.13	99.93
3	99.91	100.13
4	100.06	99.97
5	99.95	99.91
6	99.35	99.68
Mean	99.70	100.03

RESULTS AND DISCUSSION

Method Validation: The developed RP-HPLC method was validated for parameters like specificity, linearity, accuracy, precision, LOD, LOQ and robustness according to ICH guidelines [12].

System suitability: Standard solutions were prepared as per the test method and injected into the chromatographic system. The system suitability parameters like peak tailing, resolution, plate count were evaluated. The system suitability parameters were tabulated in table 1. All the parameters were found to be within the limits.

Precision:

The precision of the analytical method was verified by repeatability method. The standard solution was prepared at working concentration and analysis was carried out at replicates. The standard solutions of Ivacaftor and Tezacaftor were prepared as per the test method and injected 6 times into the column. The results of precision were tabulated in table 2. The average was taken; % RSD was calculated and reported. % RSD values were found within the limits, indicating the developed method was precise. **Linearity:** The linearity of the test solutions for the assay method was prepared from

standard stock solution at five concentration levels from 25% to 150% of assay The concentration. peak area versus concentration data was treated by leastsquares linear regression analysis (fig. 3 and 4). The results tabulated in table 3 have shown an excellent correlation between peak areas and concentration within the concentration range of 15-90 µg/ml for Ivacaftor, 10-60 The ug/ml for Tezacaftor. correlation coefficients were found to be 0.999 for both the drugs, which meet the method validation acceptance criteria and hence the method was said to be linear for both the drugs.

Accuracy: To demonstrate accuracy recovery studies were carried out by standard addition method. A known quantity of pure drug was added to pre-analyzed sample and contents were reanalyzed by the proposed method and the percent recovery was reported. The results were given in table 4.

Limit of Detection and Limit of **Ouantitation:** The limit of detection (LOD) and limit of quantitation (LOQ) were established by formula method from standard deviation of y-intercept and slope of linearity chart. The LOD and LOQ of Ivacaftor and Tezacaftor were experimentally determined by injecting six injections of each drug. The LOD of Ivacaftor and Tezacaftor was found to be 0.07µg/ml and 0.01µg/ml respectively. The LOQ of Ivacaftor and Tezacaftor was found to be 0.22µg/ml and 0.03µg/ml respectively.

Robustness: Robustness of the method was verified by altering the chromatographic conditions like mobile phase composition, column temperature, flow rate and the system suitability parameters were reported. Small changes in the operational conditions were allowed and the extent to which the method was robust was determined. A deviation of \pm 2° C in the column temperature and ± 0.1 ml/min in the flow rate and 5 % deviation in mobile phase were tried individually. A solution of target test concentration with the specified conditions was injected to the instrument in triplicate. The system suitability parameters were reported in the table 5 and found to be within the limits.

Forced degradation studies: The degradation behaviour of Ivacaftor and Tezacaftor was

studied by subjecting the drugs to various stress conditions like acid, alkali, oxidative, photolytic, thermal and neutral analysis recommended by ICH. The purity angle of the analyte components under various stress conditions was less than the threshold values, indicating spectral homogeneity across the peak. The results of forced degradation studies were presented in table 6. From the findings of degradation studies show that the drugs have undergone extensive degradation under acidic, alkaline and peroxide conditions. The method that there shows was no degradants interference at the retention times of analyte peaks. Hence the method has successfully resolved the degraded component peaks.

Assay of formulation: Amount of drug present in the formulation was estimated by taking the standard as the reference. The average % assay was calculated and found to be 99.70 % and 100.03 % for tablet form of Ivacaftor and Tezacaftor respectively. Hence the method was successfully employed for assay of available formulation.

CONCLUSION

The proposed RP-HPLC method was found to be simple, accurate, precise, robust, rapid and economical. This method gives good resolution between two compounds with a short analysis time. Hence this method can be used in quality control departments with respect to routine analysis for the assay of the tablets containing Ivacaftor and Tezacaftor.

Acknowledgements: Author expresses sincere thanks to the Principal of Krishna Teja Pharmacy College for providing facilities and great support to carry out the research work.

Conflict of interests: Authors declare that no conflicts of interest exist in this research work.

REFERENCES

1. Akram M and Umamahesh M: A new validated RP-HPLC method for the determination of Lumacaftor and Ivacaftor in its bulk and pharmaceutical dosage forms. Oriental Journal of Chemistry 2017;33(3):1492-1501.

- 2. Babu MS, Spandhana N, Babyrani P, Jagadheesh P and Akhil P: Analytical method development and validation for the estimation of Lumacaftor and Ivacaftor using RP-HPLC. Journal of Pharma Creations 2017;4(1):55-78.
- 3. B Sravanthi and M Divya: Analytical method development and validation of Ivacaftor and Lumacaftor by RP-HPLC method. Indo American Journal of Pharmaceutical Sciences 2016;3(8):900-904.
- 4. Schneider EK, Reyes-Ortega F, Wilson JW Kotsimbos T, Keating D and Li J and Velkov T: Development of HPLC and LC-MS/MS methods for the analysis of Ivacaftor, its major metabolites and Lumacaftor in plasma and sputum of fibrosis patients treated cystic with orkambi or kalydeco. Journal of Chromatography 2016;1(1038):57-62.
- 5. Shyamala and Ashok D: A novel stability indicating UPLC method for the estimation of Tezacaftor and Ivacaftor in tablet dosage form. International Journal Research 2019;10(11):4968-4973.
- Mohan Goud V, Sharma JVC and Sravanthi M: Stability indicating ultra performance liquid chromatography method development and validation for simultaneous estimation of Ivacaftor and Tezacaftor in bulk and pharmaceutical dosage form. International Journal of Scientific Research and Review 2019;8(5):128-133.
- 7. Sonawane MD, Gade ST and Narwate BM: Application of UV Spectrophotometer in method

development and validation for simultaneous estimation of Tezacaftor and Ivacaftor in the pharmaceutical dosage form. World Journal of Pharmaceutical Research 2018;7:213-219.

- 8. Chhabda PJ, Balaji M and Srinivasarao V: Development and validation of a new and stability indicating RP-HPLC method for the determination of Ivacaftor in the presence of degradant products. International Journal of Pharmacy and Pharmaceutical Sciences 2013;5:607-613.
- Narendra Singh, Parveen Bansal, Mukesh Maithani and Yashpal Chauhan: Development and validation of a novel stability-indicating RP-HPLC method for simultaneous determination of Tezacaftor and Ivacaftor in fixed dose combination. Journal of Chromatographic Science 2020;18(1):1–9.
- 10. Srimounika G, Shyamala, Sharma JVC and Swarupa A: A new stabilityindicating method for simultaneous estimation of Ivacaftor and Tezacaftor by RP-HPLC in bulk and its dosage form. International Journal of Research and Analytical Reviews 2018;5(4):774-785.
- 11. Kiranjyothi R, Balakrishnan M and Chandrasekhar KB: Method development and validation for the stability indicating simultaneous estimation of Tezacaftor and Ivacaftor in bulk and its dosage forms. International Journal of Pharmaceutical Research 2018;10(4):198-208.
- 12. ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference on Harmonization; 2005.