

An Elsevier Indexed Journal

ISSN-2230-7346

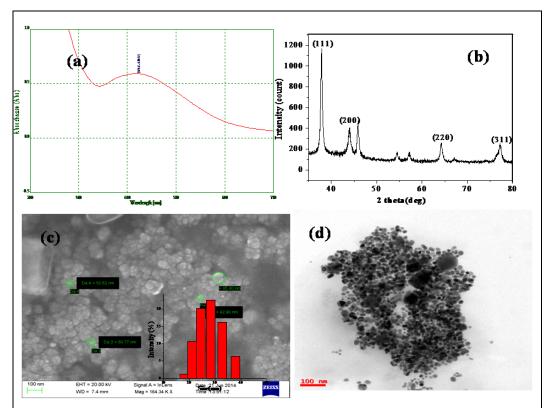
Journal of Global Trends in Pharmaceutical Sciences

ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES USING AQUEOUS EXTRACT OF *PHYLLANTHUS NIRURI* AND THEIR EVALUATION FOR ANTIMICROBIAL ACTIVITY

Deepa Sri Mandli¹, Lakshman kumar Dogiparthi^{*1}, Younus Shaik¹, Deon Jones Paul Veeradasari¹, Ravindra reddy Kandula¹, Siva Sankar Sana²

¹Department of Pharmacognosy, P. Rami Reddy memorial College of Pharmacy, Kadapa, Andhra Pradesh, INDIA.

²Department of Oriental Medicine Biotechnology, College of Life science, Kyung Hee University, Giheung-gu, 1732, Republic of Korea.


*Corresponding author E-mail: lakshman13@gmail.com

ARTICLE INFO	ABSTRACT				
Key Words	Eco-friendly synthesis of silver nanoparticles (AgNPs) was done by bio- reduction method. The synthesized nanoparticles were characterized by UV- visible spectrophotometer. X-ray diffraction (XRD), Field emission				
Nanoparticles, <i>Phyllanthus niruri</i> , Antimicrobial activity, Biomaterials	scanning electron microscopy (FESEM), Zetasizer, and High resolution transmission electron microscopy (HRTEM). For the evaluation of antimicrobial activity cup plate method was used. Silver nanoparticles were formed with in 1 h as observed by change in colour of the solution from light yellow to dark brown. The UV- visible spectrophotometer showed a				
	absorption peak between at 380-460 nm and which was the characteristic of AgNPs due to Surface plasmon resonance. X-ray diffraction analysis revealed the crystalline nature of AgNPs. The size distribution was measured by Zeta sizer, which revealed that majority of size distribution of AgNPs were in the range of 50-70 nm. FESEM and HRTEM images showed the spherical nature of the particles. Biosynthesized AgNPs showed antimicrobial activity against gram positive and gram negative bacteria.				

INTRODUCTION:

Nanotechnology is a multidisciplinary research field that physical, emerges from chemical. engineering and materials science with novel techniques and produces material at nanoscale¹. This technology is mainly with synthesis concerned the of nanoparticles of variable size, shape, chemical composition and controlled dispersity and their potential use for human benefits². Generally, particles less than 100 nm are considered as nanomaterials³.

Nanoparticles are very important and they have unique properties when compared to bulk materials, i.e., large surface area to volume ratio. Due to the high surface volume and smaller size, nanoparticles are involved in a many applications such as catalysis⁴, drug delivery⁵. Among different types of technologies, nanotechnology is one of the cutting-edge technology which connecting various academic disciplines of science.

Fig-1: (a) UV-visible spectrum of AgNPs, (b) XRD pattern of AgNPs,(c) and (d) FESEM and HRTEM of AgNPs.

Table-1: Antibacterial activity (Zone of Inhibition) results of silver nanoparticles of *Phyllanthus* niruri.

	Test pathogen	Zone of Inhibition (mm)			
S. No		Volume	Volume of AgNPs dispersion Streptomycin		Streptomycin
		10µ1	20 µl	30 µl	30 µl
1	Escherichia coli	10	10	11	11
2.	Stephylococcus	9	10	10	12
	aureus				

Silver nanoparticles (AgNPs) are involved in a many applications such as interest because of their potential applications in optics⁷, mechanics⁶, sensors⁸, drug delivery⁹ etc. The main advantage of green approach for synthesis of nanoparticles over traditional chemical and physical synthesis methods is production in aqueous media under standard conditions leads to many cost advantages, in terms of both capital equipment and operating expenses, especially in the purchase and disposal of solvents and other consumable reagents. Various plant extracts including diversifolia, Tithonia Cissus quadrangularis, Cassia angustifolia were also reported for biosynthesis of AgNPs. Phyllanthus niruri known as "Stone breaker" is plant belonging to the Euphorbiaceae family with worldwide distribution and it is used in folk Brazilian medicine for patients with Urolithosis¹⁰.

EXPERIMENTAL METHODS

The *Phyllanthus* niruri was collected during flowering season from Sri Venkateswara University, Tirupathi, India. 10 gm of fine powder was dissolved in 100 ml of distilled water and heated up to 70° C for 30 min. Solution was filtered with Whatman No. 1 filter paper. For the preparation of AgNPs, 10 ml of aqueous leaf extract was added to 90 ml of 1mM AgNO₃ solution and kept in a dark place at room temperature. Bio-reduction was monitored by visual observation and spectrophotometrically¹¹. The formed

nanoparticles were characterized by UVvisible spectrophotometer (UV-vis), X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Zeta sizer, High resolution transmission electron microscopy (HRTEM). Synthesized AgNPs tested against both gram positive and gram negative bacteria via cup plate method method for their antimicrobial activity.

RESULTS AND DISCUSSION

Nanoparticles were formed with in 1 h as observed by change in colour of the solution from light yellow to dark brown. The UV-visible spectrophotometer showed absorption peak between 380-460 nm and which is the characteristic of AgNPs due to Surface plasmon resonance shown in Fig.1(a). X-ray diffraction (Fig.1 (b)) analysis revealed the crystalline nature of AgNPs[.] The size distribution was measured by Zeta sizer which revealed that majority of size distribution of AgNPs was in the range of 50-70 nm. FESEM and HRTEM images showed the spherical nature of the particles shown in Fig.1(c) and Fig.1(d) respectively. Biosynthesized AgNPs showed antimicrobial activity against gram positive and negative bacteria *Escherichia* coli and *Stephylococcus* aureus respectively.

Synthesized AgNPs exhibited effective antimicrobial activity against both gram positive and gram negative bacteria. The values of ZOI placed in table 1. The exact mechanism for the antimicrobial activity of AgNPs is not yet known, but hypothetically, many studies reported that the AgNPs could bind to the bacterial membrane, invade the cell and cause dissipation of proton motive force which leads to the disruption of bacterial cell by forming pores on the bacterial cell wall.

CONCLUSION

In the present work, we report the bio-reduction of silver salts into silver nanoparticles using extract of *Phyllanthus niruri* by simple, eco-friendly method. The synthesized AgNPs were spherical in nature and well dispersed with average size of 60 nm evidence by HRTEM and particles size studies. The synthesized AgNPs were proved as excellent antimicrobial agent.

REFERENCES

- 1. Narasimha, G., B. Praveen, K. Mallikarjuna and B.D.P. Raj, (2011), Mushrooms (*Agaricus bisporus*) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. Int. J. Nano Dimens., 2: 29–36.
- 2. Vanaja, M., G. Gnanajobitha, K. Paulkumar, S. Rajeshkumar, C. Malarkodi and G. Annadurai. (2013), Phytosynthesis of silver nanoparticles by Cissus quadrangularis: Influence of physicochemical factors. J. Nanostructure Chem., Vol. 3. 10.1186/2193-8865-3-17.
- 3. Thombre, R., S. Mehta, J. Mohite and P. Jaisinghani, (2013), Synthesis of silver nanoparticles and its cytotoxic effect against thp-1 cancer cell line. Int. J. Pharma Bio. Sci., 4: 184–192.
- Santos, K.O., W.C. Elias, A.M. Signori, F.C. Giacomelli, H. Yang and J.B. Domingos, (2012), Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J. Phys. Chem. C, 116: 4594–4604.
- Khan, A.K., R. Rashid, G. Murtaza and A. Zahra, (2014), Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharmaceut. Res., 13: 1169– 1177.
- Mehrdad Forough, Khalil Farhadi, (2010), Biological and Green synthesis of Silver nanoparticles, Turkish J EngEnvironSci; 34:281– 7.

- Stephan T. Dubas, Vimolvan Pimpan, (2008), Green synthesis of silver nanoparticles for ammonia Sensing, Talanta; 76(1):29–33.
- Katherine A Willets et al., Nanoscale localized surface Plasmon resonance biosensors, Nanotecnology II Pg. 159.
- Vasudeva reddy Netala *et al.*, (2014), Bio-fabrication of silver nanoparticles using aqueous extract of *Melia dubia* characterization and antifungal activity, Int J. of Pharmacy and Ph. Sciences, vol 6, Issue 10, 196-200.
- Kietey S, Dwivedi R, Monga M: (2008), Ayurvedic medicine and renal calculi. J. Endourol; 22; 1613–6.
- 11. Siva sankar Sana et al., (2015), Eco friendly synthesis of silver nanoparticles using leaf extract of *Grewia flaviscence* and study of their antimicrobial activity, Materials Letters, 145, 347–350.