A REVIEW ON SPECTROPHOTOMETRIC AND CHROMATOGRAPHIC METHODS FOR THE ESTIMATION OF PHENYLEPHRINE IN BULK AND DIFFERENT DOSAGE FORMS

A. Geetha Susmita*, G. Rajitha and T. Lakshmi Bhavani
Institute of Pharmaceutical Technology
Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati-517502, Andhra Pradesh, India.
*Corresponding author E-mail: susmithaadepu @ gmail.com

ARTICLE INFO

Key Words

Phenylephrine, Nasal decongestant, UV Spectroscopy, Liquid Chromatography

ABSTRACT

Phenylephrine hydrochloride is used as nasal decongestant. Oral phenylephrine is extensively metabolized by MAO enzyme in the gastrointestinal tract and liver. It is a direct selective alpha adrenergic receptor agonist; it does not cause release of endogenous noradrenalin, as pseudoephedrine does. Phenylephrine hydrochloride (alpha-adrenergic, sympathomimetic agent) is a useful vasoconstrictor of sustained action with little effect on the myocardium or the central nervous system. Phenylephrine is rarely used to increase the blood pressure as a vasopressor in unstable patients with hypotension. It is available in the following dosage forms: nasal drops, nasal spray, eye drops and phenylephrine injection. Phenylephrine is also available as oral tablets, chewable tablets, oral disintegrating tablets, capsules, suspensions and sachets formulations. This review shows different methods developed for the determination of Phenylephrine and along with combinations like UV-spectroscopy and liquid chromatography.

INTRODUCTION:

Phenylephrine is $\quad 3-[(1 \mathrm{R})-1-$ hydroxy-2- (methyl amino) ethyl] phenol, appears as a white or almost white, crystalline powder. It dissolves in dilute mineral acids and in dilute solutions of alkali hydroxides. The Phenylephrine is a base with a pKa value of 8.97 and melts about $174^{\circ} \mathrm{C} . .^{1,2}$ It is used as a sympathomimetic amine that acts predominantly on α-adrenergic receptors. Phenylephrine is official in IP, BP, EP and USPNF pharmacopoeia ${ }^{3}$. It is mainly used to treat nasal congestion, but may also be useful in treating hypotension and shock,
hypotension during spinal anesthesia, prolongation of spinal anesthesia, paroxysmal supraventricular tachycardia, symptomatic relief of external or internal haemorrhoids and to increase blood pressure as an aid in the diagnosis of heart murmurs.

Figure 1: Structure of Phenylephrine

Molecular Formula: $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2}$

Table 1: Analysis of Phenylephrine by using UV-spectroscopy and chromatography techniques

S.No.	DRUG	METHOD	DESCRIPTION	Ref.no.
1	Phenylephrine Hydrochloride in pharmaceutical nasal drops formulations.	UV- Spectrophotometry	Wavelength: 291 nm Diluent: sodium hydroxide (pH13.5) Linearity Range: 10 $100 \mu \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ Correlation Coefficient (r^{2}): 0.9990. LOD and LOQ: $0.892 \mu \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ and $2.969 \mu \mathrm{~g} \cdot \mathrm{~cm}^{-3}$	5
2	Bromhexine Hydrochloride and Phenylephrine Hydrochloride in their Combined Pharmaceutical Dosage Form	UV- Spectrophotometry	Wavelength: 241 nm for Phenylephrine $\mathrm{HCl} \& 233 \mathrm{~nm}$ for Bromohexine HCl Solvent: Methanol, Linearity Range: $5-30 \mu \mathrm{~g} / \mathrm{ml}$ for Bromhexine HCl and $10-60$ $\mu \mathrm{g} / \mathrm{ml}$ for Phenylephrine HCl Correlation Coefficient (r^{2}): 0.999 for Bromhexine HCl and 0.998 for Phenylephrine HCl LOD and LOQ: 0.0015 \& $0.2330 \mu \mathrm{~g} / \mathrm{ml}$ for Bromhexine HCl and $0.002 \& 0.2858 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine HCl	6
3	Ebastine and Phenylephrine Hydrochloride in combined Tablet dosage Form	UV- Spectrophotometry	Wavelength: 231.61 nm Ebastine \& 242.21 nm for Phenylephrine HCl Solvent: Methanol, Linearity Range: $5-40 \mu \mathrm{~g} / \mathrm{ml}$ for both Correlation Coefficient (r^{2}): 0.9996 for Ebastine and 0.9991 for Phenylephrine HCl LOD and LOQ: $0.84 \mu \mathrm{~g} / \mathrm{ml}$ and $2.54 \mu \mathrm{~g} / \mathrm{ml}$ for Ebastine LOD and LOQ: $0.94 \mu \mathrm{~g} / \mathrm{ml}$ and $2.85 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine Hydrochloride	7
4.	Chlorpheniramine Maleate and Phenylephrine Hydrochloride in Bulk and Capsule Dosage Form	UV- Spectrophotometry	Wavelength: 261 nm for Chlorpheniramine Maleate \&272nm for Phenylephrine HCl . Linearity Range: $2-$ $12 \mu \mathrm{~g} / \mathrm{ml}$ for Chlorpheniramine Maleate and $5-30 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine Hydrochloride Correlation Coefficient (r^{2}): 0.9991 for Chlorpheniramine Maleate and 0.9994 for Phenylephrine HCl LOD and LOQ: $0.115 \mu \mathrm{~g} / \mathrm{ml}$ and $0.348 \mu \mathrm{~g} / \mathrm{ml}$ for	8

			Chlorpheniramine Maleate LOD and LOQ: $0.200 \mu \mathrm{~g} / \mathrm{ml}$ and $0.608 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine Hydrochloride.	
5	Phenylephrine, Dimethindine Maleate and its major toxic impurity; 2-ethyl pyridine, in raw material and nasal gel	TLC	Stationary phase: Silica Gel TLC F254 plates Mobile phase: toluene: Acetone: isopropyl alcohol: ammonia (5.3:2.7:1.8:0.4,by volume) Retention factor $\left(\mathrm{R}_{\mathrm{f}}\right)$: 0.26 ± 0.01 for Phenylephrine 0.54 ± 0.02 for Dimethindine Maleate. 0.72 ± 0.01 for 2ethyl pyridine, Correlation coefficient (r^{2}): 0.9990 for Phenylephrine, 0.9990 for Dimethindine Maleate and 0.9994 for 2-ethyl pyridine.	9
6	Paracetamol, Phenylephrine hydrochloride, Nimesulide, Cetrizine and Caffeine in bulk and pharmaceutical dosage form	HPTLC	Stationary phase: Merck aluminum plates precoated with silica gel $60 \mathrm{~F}_{254}$. Mobile phase: Toluene: Ethyl acetate: Methanol: Formic acid (16:2:4:0.8, v/v/v/v). Retardation factor: Paracetamol (0.37), Phenylephrine hydrochloride (0.09), Nimesulide (0.70), Cetrizine (0.27) and Caffeine (0.51). Wave length: 212 nm . Linearity range: 200-1400 ng band $^{-1}$ for Paracetamol, Nimesulide, Cetrizine, Caffeine and 100-1400 ng band $^{-1}$ for Phenylephrine hydrochloride.	10
7	Two Binary Mixtures Containing Ketorolac Tromethamine (KTC) with Phenylephrine Hydrochloride (PHE) and with Febuxostat (FBX) in bulk drug and in combined dosage forms.	HPTLC	Stationary phase: Merck HPTLC aluminum sheets of silica gel 60 F254 Mobile phase: Chloroform methanol-ammonia (7:3:0.1, v / v) and (7.5:2.5:0.1, v/v) for KTC/PHE and KTC/FBX mixtures, respectively. Wave length: 273 and 320 nm for Mixtures 1 and 2, respectively. Linearity range: $0.20-0.60$ and $0.60-1.95 \mu \mathrm{~g}$ band $^{-1}$ for KTC and PHE (Mixture 1), respectively, and	11

			$\begin{aligned} & 0.10-1.00 \text { and } 0.25-2.50 \mu \mathrm{~g} \\ & \text { band }^{-1} \text { for KTC and FBX } \\ & \text { (Mixture } 2) \text {, respectively. } \\ & \text { Correlation coefficient }\left(\mathrm{r}^{2}\right) \text { : } \\ & >0.999 \text {. } \end{aligned}$	
8	Ascorbic acid, Phenylephrine, Paracetamol and Caffeine in tablet	HPLC	Mobile Phase: Acetonitrile and Phosphate buffer (pH 6.50) (10 : 90, v/v). Stationary Phase: monolithic column, Onyx Monolithic C18 (100×4.6 mm) Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$ Wavelength: 210 nm (Phenylephrine, Paracetamol) 235 nm (Ascorbic acid and Caffeine) Linearity Range: 50 $150 \mu \mathrm{~g} / \mathrm{ml}$. Retention time: Correlation Coefficient (r^{2}): 0.9992 for ascorbic acid, 0.9994 for phenylephrine, 0.9999 for paracetamol and 0.9992 for caffeine.	12
9	Bromhexine and phenylephrine HCl in its Pharmaceutical combined dosage form	RP-HPLC	Mobile Phase: Buffer (pH 5.0)-Acetonitrile-Triethylamine (80:20:0.25). Stationary Phase: C18 column ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$) Hypersil BDS. Flow Rate: 1.0 $\mathrm{ml} / \mathrm{min}$. Linearity Range: 4$12 \mu \mathrm{~g} / \mathrm{ml}$ for Bromhexine and $5-15 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine HCl . Wavelength: 225 nm Retention time: Bromhexine and Phenylephrine HCl were found to 3.66 min and 5.29 min respectively. Correlation Coefficient (r^{2}): 0.99 for Bromhexine HCl and 0.99 for Phenylephrine HCl	13
10	Ebastine and Phenylephrine hydrochloride in tablet dosage form	RP-HPLC	Mobile Phase: Buffer: Acetonitrile (20:80) \% v/v Stationary Phase: Inertsil ODS$3(250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ particle size). Flow Rate: 0.5 $\mathrm{ml} / \mathrm{min}$. Wavelength: 230 nm Linearity Range: $50-100 \mu \mathrm{~g} / \mathrm{ml}$ Retention Time: henylephrine hydrochloride and Ebastine was 3.90 min and 5.83 min respectively. Correlation Coefficient (r^{2}): 0.998 for Phenylephrine hydrochloride	14

			and 0.999 for Ebastine. LOD: $0.352 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine hydrochloride and $0.248 \mu \mathrm{~g} / \mathrm{mL}$ for Ebastine. LOQ: $1.068 \mu \mathrm{~g} / \mathrm{mL}$ for Phenylephrine hydrochloride and $0.752 \mu \mathrm{~g} / \mathrm{mL}$ for Ebastine.	
11	Phenylephrine hydrochloride and Chlorpheniramine maleate in pharmaceutical dosage form	RP-HPLC	Mobile phase: 0.01 M phosphate buffer: acetonitrile (70: 30). Stationary Phase: Princeton C8 analytical column (250 x $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m})$ Flow Rate: $1 \mathrm{ml} / \mathrm{min}$ Wavelength: 230 nm Linearity Range:5-60 $\mu \mathrm{g} / \mathrm{mL}$ Correlation Coefficient (r^{2}): 0.9996 for Phenylephrine hydrochloride and 0.9998 for Chlorpheniramine maleate. LOD: $0.28 \mu \mathrm{~g} / \mathrm{mL}$ for phenylephrine hydrochloride and $0.36 \mu \mathrm{~g} / \mathrm{mL}$ for Chlorpheniramine maleate. LOQ: $0.86 \mu \mathrm{~g} / \mathrm{mL}$ for phenylephrine hydrochloride and $1.1 \mu \mathrm{~g} / \mathrm{mL}$ for Chlorpheniramine maleate.	15
12	Ebastine and phenylephrine hydrochloride in tablet	RP-HPLC	Mobile phase: $\mathrm{MeOH}: \mathrm{KH}_{2} \mathrm{PO}_{4}(80: 20 \mathrm{pH} 5.5)$ Stationary Phase: Prontosil C18 [4.6(id) $\times 250 \mathrm{~mm}$] Flow Rate: $1.5 \mathrm{ml} / \mathrm{min}$ Wavelength: 275 nm Solvent: Methanol Retention Time: 3.5 min for ebastine and 1.8 min for phenylephrine HCl	16
13	Phenylephrine HCl and CetrizineHCl in Tablet dosage form	RP-HPLC	Mobile Phase: Buffer (0.1 M Ammonium dihydrogen phosphate $\mathrm{pH} 5.2 \pm 0.05$) : Acetonitrile ($50: 50 \% \mathrm{v} / \mathrm{v}$) Stationary Phase: Princeton SPHER C18 column (250 mm x 4.6 mm id, 5μ particle size) Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$ Wavelength: 225 nm , Linearity Range: $10-60 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine hydrochloride and $5-30 \mu \mathrm{~g} / \mathrm{ml}$ for Cetrizine	17

			HCl. Retention Time:2.19 \pm 0.05 min for phenylephrine hydrochloride and 4.16 ± 0.05 min for CetrizineHCl Correlation Coefficient (r^{2}): 0.9998 for both.	
14	Tropicamide and Phenylephrine Hydrocholride in ophthalmic formulation	RP-HPLC	Mobile Phase: Buffer (0.05M KH2PO4, pH-4) and methanol in the ratio of $60: 40 \mathrm{v} / \mathrm{v}$. Stationary Phase: ODS Hypersil C18, 250mm \times $4.6 \mathrm{~mm}, 5 \mu$ (Particle Size) column. Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$ Wavelength: 216 nm Retention Time: 3.290 min for Tropicamide and 5.063 min for Phenylephrine Hydrochloride Correlation Coefficient (r^{2}): 0.999 for Tropicamide and 0.998 for Phenylephrine Hydrocholride. Linearity Range: $4-12 \mu \mathrm{~g} / \mathrm{ml}$ for Tropicamide and 25-70 $\mu \mathrm{g} / \mathrm{ml}$ for Phenylephrine Hcl	18
15	Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride And Triprolidine Hydrochloride In Bulk And Combined Tablets Dosage Forms	RP-HPLC-PDA	Mobile Phase: Methanol:acetonitrile: 0.1 M potassium dihydrogen phosphate buffer (75:15:10) adjusted to pH 6.8 with sodium hydroxide. Stationary Phase: Kromasil C18 ($250 \times 4.6 \mathrm{~mm}$, $5 \mu \mathrm{~m})$ Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$ Wavelength: 271 nm Linearity Range: Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride and Triprolidine Hydrochloride were 48-112, $24-56$ and $16-14 \mathrm{mcg} / \mathrm{ml}$, respectively. Retention Time: Dextromethorphan Hydrobromide, Phenylephrine Hydrochloride and Triprolidine Hydrochloride were measured at $2.547,3.783$ and 6.017 min , respectively. Correlation Coefficient (r^{2}): Dextromethorphan - 0.999 Phenylephrine Hydrochloride 0.998 . Triprolidine	19

			Hydrochloride - 0.997	
16	Ketorolac Tromethamine And Phenylephrine in Pharmaceutical Dosage Form	RP-HPLC-PDA	Mobile Phase: Phosphate Buffer (pH 3.0): Acetonitrile (60:40), Stationary Phase: Zodiac, C18 ($150 \times 4.6 \times 5 \mu \mathrm{~m}$) Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$, Wavelength: 303 nm , Linearity Range: $36-84 \mu \mathrm{~g} / \mathrm{ml}$ for ketorolac tromethamine and $60-140 \mu \mathrm{~g} / \mathrm{ml}$ for phenylephrine. Retention Time: 4.1 min . for ketorolac tromethamine and 2.9 min . for phenylephrine. Correlation Coefficient (r^{2}): 0.9995 for ketorolac tromethamine and 0.9996 for phenylephrine. LOD: $0.75 \mu \mathrm{~g} / \mathrm{ml}$ for ketorolac tromethamine and $1.89 \mu \mathrm{~g} / \mathrm{ml}$ for phenylephrine LOQ: $2.29 \mu \mathrm{~g} / \mathrm{ml}$ for ketorolac tromethamine and $5.73 \mu \mathrm{~g} / \mathrm{ml}$ for phenylephrine	20
17	Phenylephrine And Ketorolac In Injectable Preparations	RP-HPLC-PDA	Mobile Phase: Buffer and Acetonitrile (30:70). Stationary Phase: Std BDS C8column $(250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ id, $5 \mu \mathrm{~m}$ particle size) Flow Rate: 1 $\mathrm{ml} / \mathrm{min}$, Wavelength: 220 nm Retention Time: 2.313min for Phenylephrine Hydrochloride and 3.090 min for Ketorolac. Correlation Coefficient (r^{2}): 0.9992 for phenylephrine and 0.9994 for ketorolac Linearity Range: $20-120 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine and 6$36 \mu \mathrm{~g} / \mathrm{ml}$ for ketorolac.	21
18	Phenylephrine hydrochloride and Guaifenesin in bulk drug and pharmaceutical dosage form	RP-HPLC-PDA	Mobile Phase: 5Mm ammonium acetate: acetonitrile ($80: 20 \mathrm{v} / \mathrm{v}$), Stationary Phase: A Zorbax reverse phase C18 column ($150 \times 3.0 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$) Flow Rate: $1 \mathrm{ml} / \mathrm{min}$, Wavelength: 222 nm Linearity Range: $1-5 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine hydrochloride and $15-75 \mu \mathrm{~g} / \mathrm{ml}$ for Guaifenesin. Retention Time: 1.62 min for phenylephrine	22

			hydrochloride and 2.28 min for guaifenesin. Correlation Coefficient (r^{2}): >0.999. LOD: $0.11 \mu \mathrm{~g} / \mathrm{mL}$ for Phenylephrine hydrochloride and $0.08 \mu \mathrm{~g} / \mathrm{mL}$ for Guaifenesin.LOQ: 0.34 $\mu \mathrm{g} / \mathrm{mL}$ for Phenylephrine hydrochloride and $0.26 \mu \mathrm{~g} / \mathrm{mL}$ for Guaifenesin.	
19	Acetaminophen, Phenylephrine Hydrochloride and Dextromethorphan Hydrobromide in Liquicap Dosage form	RP-HPLC with Gradient programme	Stationary Phase: Inertsil C18 column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$) Mobile phase: The composition of mobile phase A (90:10) buffer: acetonitrile and mobile phase B (50:50) buffer: acetonitrile. Timed gradient programme time/A\% is 0.0/100, 6.0/100, 6.5/85, 16.0/0, 16.5/100, 20.0/100. Flow Rate: $1.5 \mathrm{ml} / \mathrm{min}$ Wavelength: 272nm, Retention Time: Acetaminophen - 5 min . Phenylephrine hydrochloride 3min. Dextromethorphan hydrobromide -15 min . Correlation Coefficient (r^{2}): Acetaminophen - 0.9999 Dextromethorphan Hydrobromide-0.9998 Phenylephrine Hydrochloride 0.9999	23
20	Phenylephrine, Acetaminophen, Guaifenesin and Dextromethorphan in tablet dosage form	RP-HPLC with Gradient programme	Stationary Phase: C18 column Altima ($150 \times 4.6 \mathrm{~mm}, 5 \mu$) Mobile phase: Orthophosphoric acid in a 1000 ml of water as Solvent A and Acetonitrile as Solvent B Timed gradient programme time/A\% is $0 / 88,3 / 88,10 / 15$, 10.5/88, 13/88. Flow Rate: $1.0 \mathrm{ml} / \mathrm{min}$. Wavelength: 272nm. Linearity Range: Phenylephrine - 2.0-7.0 $\mu \mathrm{g} / \mathrm{mL}$, Acetaminophen - 130$455 \mu \mathrm{~g} / \mathrm{mL}$, Guaifenesin 50$300 \mu \mathrm{~g} / \mathrm{mL}$ and Dextromethorphan 2.5-15 $\mu \mathrm{g} / \mathrm{mL}$ respectively.	24

Phenylephrine is also used to treat sinus congestion, or congestion of the tubes that drain fluid from your inner ears, called the Eustachian. ${ }^{4}$ This paper focuses on the review of available methods for the analysis of phenylephrine. The literature survey reported several analytical methods for the determination of Phenylephrine, which include UV- spectrophotometry, Thin Layer Chromatography (TLC), High Pressure Thin Layer Chromatography (HPTLC), High Performance Liquid Chromatography (HPLC), Reverse PhaseHPLC (RP-HPLC) in bulk and different dosage forms.

CONCLUSION:

This review specifies the reported spectroscopic and chromatographic methods developed and validated for the estimation of Phenylephrine and along with different combination drugs. Rendering to this review it was concluded that for the analysis of phenylephrine, different spectroscopic and chromatographic methods are available for single component as well as for different combinations. It was found that the Mobile phase containing Acetonitrile, methanol, phosphate buffer were common for most of the chromatographic methods for faster elution. The flow rate was found to be in the range $0.5-1.5 \mathrm{ml} / \mathrm{min}$ for the shorter retention time. Methanol was used as a common solvent in most of the spectroscopic and chromatographic methods.

All these methods were found to be simple, economic, accurate, reproducible and precise in nature. Most of the methods were of UV absorbance detection and RP-HPLC as these methods offer best available reliability, repeatability, analysis time and sensitivity. In future, there is a scope for the development of validated hyphenated methods for the estimation of Phenylephrine and combination with other drugs in the biological fluids.

REFERENCES:

1. http://www.drugbank.ca/drugs/DB 00388 (APRD00365).
2. https://pubchem.ncbi.nlm.nih.gov/c ompound/phenylephrine.
3. Amee H. Patel, DR. Sagar, D. Solanki, "Analytical method development and validation for simultaneous determination of Ebastine and Phenylephrine hydrochloride in combined pharmaceutical dosage form", International Journal of Pharmaceutical Research and Bioscience, 2014; Volume 3 (2):279294.
4. https://www.drugs.com/search.php ?searchterm=phenylephrine.
5. Ivana Savic, Goran Nikolic, Vladimir Bankovic, "Development and validation of spectrophotometric method for Phenylephrine hydrochloride estimation in nasal drops formulations", Macedonian Journal of Chemistry and Chemical Engineering, Vol. 27, No. 2, pp. 149-156, 2008.
6. DR Mevada, K Bhalodiya, B Maniar, K Dadhania, S Faldu, "Development and Validation of First Order Derivative Spectrophotometric Method for Simultaneous Estimation of Bromhexine Hydrochloride and Phenylephrine Hydrochloride in their Combined Pharmaceutical Dosage Form", PharmaTutor Magazine, Vol.2(6), pp. 132-138, 2014.
7. Bhavini N. Patel, Chaganbhai N. Patel, Nisha B. Patel, "Development and Validation of First Order Derivative Spectroscopic Method for Content

Uniformity for Simultaneous Estimation of Ebastine and Phenylephrine Hydrochloride in Combined Tablet Dosage Form", International Journal of Pharm Tech Research, Vol.6, No.2, pp 537-545, April-June 2014.
8. S. J. Wadher, T. M. Kalyankar, P. P. Panchal, "Development and Validation of Simultaneous Estimation of Chlorpheniramine Maleate and Phenylephrine Hydrochloride in Bulk and Capsule Dosage Form by Ultra-Violet Spectrophotometry", International Journal of ChemTech Research,Vol.5, No.5, pp 24102419, July-Sept 2013.
9. Maha A Hegazy, Medhat A AlGhobashy, Basma M Eltanany, Fatma I Khattab, "Purity Indicating TLC Method for Quantitative Determination of Phenylephrine and Dimethindine Maleate in Presence of Dimethindine Maleate Impurity: 2-ethyl pyridine in Nasal Gel", Journal of pharmaceutical research,Volume 1(1),pg no.1-6, 2016.
10. Sagar S. Vidhate, Sachin E. Potawale, Saurabh S. Kardile, Arun M. Kashid, Amol S.Bansode, Abhijeet A. Bidkar, Hemant M. Washimkar, Pravin D. Pawar, "Development and validation of HPTLC method for simultaneous quantification of Paracetamol, Phenylephrine hydrochloride, Nimesulide, Cetrizine and Caffeine in bulk and pharmaceutical dosage form", Der Pharmacia Sinica, Vol. 6(7):1-8,2015.
11. Fawzy A. El Yazbi, Ekram M. Hassan, Essam F. Khamis, Marwa A.A. Ragab, Mohamed M.A. Hamdy, "Development and Validation of a High- Performance

Thin-Layer Chromatographic Method for the Simultaneous Determination of Two Binary Mixtures Containing Ketorolac Tromethamine with Phenylephrine Hydrochloride and with Febuxostat", Journal of Chromatographic Science, 2016, Vol. 54, No. 5, 819-828, doi: 10.1093/chromsci/bmv250.
12. Petra Koblova, Hana Sklenarova, IvanaBrabcova and Petr Solich, "Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column", The Royal Society of Chemistry DOI: 10.1039/c2ay05784k, 2012.
13. Jivani N. P., Vekariya. H., Rajput H. P., "Stability Indicating HPLC Method Development and Validation for Simultaneous Estimation of Bromhexine and Phenylephrine HCL in its Combined Pharmaceutical Dosage Form", J. Pharm Sci Bioscien c Res., volume 6(4):523-528,2016.
14. Thakor Khushbu A., Dr. T.Y.pasha, Patel Parth U., Chauhan Ruchita J., Patel Nidhi H., "Development and validation of analytical method for simultaneous estimation of Ebastine and Phenylephrine hydrochloride in tablet dosage form", International Bulletin of Drug Research., Vol4(7): 16-40, 2014.
15. Renu Sehrawat, Mamta Khatak, Anil Kumar, Sunil Khatak, "Development and validation of RP-HPLC method for simultaneous estimation of phenylephrine hydrochloride and chlorpheniramine maleate in pharmaceutical dosage form", Internationale pharmaceutica
sciencia Vol. 3 (2), April-June 2013.
16. R.S. Wagh, R.A. Hajare, A.G. Tated, P.A. Gadbail, F.A. Khan, S.D. Kayal, "Development and validation for simultaneous determination of Ebastine and Phenylephrine hydrochloride in tablet formulation by RP-HPLC", International Journal of Pharmaceutical Research and Development, Vol. 3(7): 214-220, September, 2011.
17. S.S. Deo, F. Inam, T. B. Deshmukh, T. L. Lambat, "Development and validation of RP-HPLC method for simultaneous determination of phenylepherine hydrochloride and cetirizine hydrochloride in tablet dosage form, International Journal of Pharmaceutical Sciences and Research, Vol. 6(9): 4069-4074, 2015.
18. Harshit B Patel, Payal Chauhan, Bhavesh D Prajapati, Samir K Shah, "RP-HPLC method development and validation for simultaneous estimation of tropicamide and phenylephrine hydrocholride in ophthalmic formulation", International Journal of Institutional pharmacy and Life sciences, Vol.4(5), SeptemberOctober, 2014.
19. Kotaiah.Paidipala, Kamarapu.SK, "Method development and validation of RP-HPLC method for simultaneous estimation of dextromethorphan hydrobromide, phenylephrine hydrochloride and triprolidine hydrochloride in bulk and combined tablets dosage forms", International Journal of Pharmacy and Biological Sciences, Vol.3(3), pp 172-179, Jul-Sept 2013.
20. Ankita dwivedi, Vaishali Jadhav, Ashish Jain, "Development and validation of RP-HPLC method for simultaneous estimation of ketorolac tromethamine and phenylephrine in pharmaceutical dosage form", International journal of analytical, pharmaceutical and biomedical sciences, Vol. 5(7), July-2016.
21. Prasuna Sundari, Anitha kusuma, Prathima Srinivas, "A validated RP-HPLC method for the simultaneous estimation of phenylephrine and ketorolac in injectable preparations", International Journal of Chemical \& Pharmaceutical Analysis, Vol. 3 (2), January-March 2016.
22. Buchi N. Nalluri, CH. Suma, K.Vasantha, A. Prabhakar Reddy, CH. Ajay Kumar, "Simultaneous estimation of Phenylephrine hydrochloride and Guaifenesin in bulk drug and pharmaceutical dosage forms by RP-HPLC-PDA method", Journal of Chemical and Pharmaceutical Research, Vol. 5(8): 188-194, 2013.
23. P. G. Bhortake, R. S. Lokhande, "Simultaneous Determination of Acetaminophen, Phenylephrine Hydrochloride and Dextromethorphan Hydrobromide in Liquicap Dosage form by RP-HPLC", International Journal of Pharma Research \& Review, Vol. 3(9):9-14, Sept 2014.
24. Vijay Kumar Rekulapally and Vinay U. Rao, "A novel stability indicating RP-HPLC method development and validation for simultaneous estimation of phenylephrine, acetaminophen, guaifenesin and dextromethorphan in tablet dosage form", Der Pharmacia Lettre, Vol. 7 (7):329339, 2015.

